基于事件的动态视觉传感器与稀疏超维计算的集成:具有在线学习能力的低功耗加速器

Michael Hersche, Edoardo Mello Rella, Alfio Di Mauro, L. Benini, Abbas Rahimi
{"title":"基于事件的动态视觉传感器与稀疏超维计算的集成:具有在线学习能力的低功耗加速器","authors":"Michael Hersche, Edoardo Mello Rella, Alfio Di Mauro, L. Benini, Abbas Rahimi","doi":"10.1145/3370748.3406560","DOIUrl":null,"url":null,"abstract":"We propose to embed features extracted from event-driven dynamic vision sensors to binary sparse representations in hyperdimensional (HD) space for regression. This embedding compresses events generated across 346×260 differential pixels to a sparse 8160-bit vector by applying random activation functions. The sparse representation not only simplifies inference, but also enables online learning with the same memory footprint. Specifically, it allows efficient updates by retaining binary vector components over the course of online learning that cannot be otherwise achieved with dense representations demanding multibit vector components. We demonstrate online learning capability: using estimates and confidences of an initial model trained with only 25% of data, our method continuously updates the model for the remaining 75% of data, resulting in a close match with accuracy obtained with an oracle model on ground truth labels. When mapped on an 8-core accelerator, our method also achieves lower error, latency, and energy compared to other sparse/dense alternatives. Furthermore, it is 9.84× more energy-efficient and 6.25× faster than an optimized 9-layer perceptron with comparable accuracy.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Integrating event-based dynamic vision sensors with sparse hyperdimensional computing: a low-power accelerator with online learning capability\",\"authors\":\"Michael Hersche, Edoardo Mello Rella, Alfio Di Mauro, L. Benini, Abbas Rahimi\",\"doi\":\"10.1145/3370748.3406560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to embed features extracted from event-driven dynamic vision sensors to binary sparse representations in hyperdimensional (HD) space for regression. This embedding compresses events generated across 346×260 differential pixels to a sparse 8160-bit vector by applying random activation functions. The sparse representation not only simplifies inference, but also enables online learning with the same memory footprint. Specifically, it allows efficient updates by retaining binary vector components over the course of online learning that cannot be otherwise achieved with dense representations demanding multibit vector components. We demonstrate online learning capability: using estimates and confidences of an initial model trained with only 25% of data, our method continuously updates the model for the remaining 75% of data, resulting in a close match with accuracy obtained with an oracle model on ground truth labels. When mapped on an 8-core accelerator, our method also achieves lower error, latency, and energy compared to other sparse/dense alternatives. Furthermore, it is 9.84× more energy-efficient and 6.25× faster than an optimized 9-layer perceptron with comparable accuracy.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们提出将从事件驱动的动态视觉传感器中提取的特征嵌入到高维空间的二值稀疏表示中进行回归。这种嵌入通过应用随机激活函数,将346×260差分像素上生成的事件压缩为稀疏的8160位向量。稀疏表示不仅简化了推理,而且使在线学习具有相同的内存占用。具体来说,它通过在在线学习过程中保留二进制向量组件来实现有效的更新,而这是需要多位向量组件的密集表示无法实现的。我们展示了在线学习能力:使用仅使用25%数据训练的初始模型的估计和置信度,我们的方法不断更新剩余75%数据的模型,从而与在地面真值标签上使用oracle模型获得的准确性密切匹配。当映射到8核加速器上时,与其他稀疏/密集替代方法相比,我们的方法还实现了更低的错误、延迟和能量。此外,在同等精度下,它比优化后的9层感知器节能9.84倍,速度6.25倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating event-based dynamic vision sensors with sparse hyperdimensional computing: a low-power accelerator with online learning capability
We propose to embed features extracted from event-driven dynamic vision sensors to binary sparse representations in hyperdimensional (HD) space for regression. This embedding compresses events generated across 346×260 differential pixels to a sparse 8160-bit vector by applying random activation functions. The sparse representation not only simplifies inference, but also enables online learning with the same memory footprint. Specifically, it allows efficient updates by retaining binary vector components over the course of online learning that cannot be otherwise achieved with dense representations demanding multibit vector components. We demonstrate online learning capability: using estimates and confidences of an initial model trained with only 25% of data, our method continuously updates the model for the remaining 75% of data, resulting in a close match with accuracy obtained with an oracle model on ground truth labels. When mapped on an 8-core accelerator, our method also achieves lower error, latency, and energy compared to other sparse/dense alternatives. Furthermore, it is 9.84× more energy-efficient and 6.25× faster than an optimized 9-layer perceptron with comparable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1