用非参数极大似然估计校正逻辑回归中的协变量测量误差

S. Rabe-Hesketh, A. Pickles, A. Skrondal
{"title":"用非参数极大似然估计校正逻辑回归中的协变量测量误差","authors":"S. Rabe-Hesketh, A. Pickles, A. Skrondal","doi":"10.1191/1471082X03st056oa","DOIUrl":null,"url":null,"abstract":"When covariates are measured with error, inference based on conventional generalized linear models can yield biased estimates of regression parameters. This problem can potentially be rectified by using generalized linear latent and mixed models (GLLAMM), including a measurement model for the relationship between observed and true covariates. However, the models are typically estimated under the assumption that both the true covariates and the measurement errors are normally distributed, although skewed covariate distributions are often observed in practice. In this article we relax the normality assumption for the true covariates by developing nonparametric maximum likelihood estimation (NPMLE) for GLLAMMs. The methodology is applied to estimating the effect of dietary fibre intake on coronary heart disease. We also assess the performance of estimation of regression parameters and empirical Bayes prediction of the true covariate. Normal as well as skewed covariate distributions are simulated and inference is performed based on both maximum likelihood assuming normality and NPMLE. Both estimators are unbiased and have similar root mean square errors when the true covariate is normal. With a skewed covariate, the conventional estimator is biased but has a smaller mean square error than the NPMLE. NPMLE produces substantially improved empirical Bayes predictions of the true covariate when its distribution is skewed.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation\",\"authors\":\"S. Rabe-Hesketh, A. Pickles, A. Skrondal\",\"doi\":\"10.1191/1471082X03st056oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When covariates are measured with error, inference based on conventional generalized linear models can yield biased estimates of regression parameters. This problem can potentially be rectified by using generalized linear latent and mixed models (GLLAMM), including a measurement model for the relationship between observed and true covariates. However, the models are typically estimated under the assumption that both the true covariates and the measurement errors are normally distributed, although skewed covariate distributions are often observed in practice. In this article we relax the normality assumption for the true covariates by developing nonparametric maximum likelihood estimation (NPMLE) for GLLAMMs. The methodology is applied to estimating the effect of dietary fibre intake on coronary heart disease. We also assess the performance of estimation of regression parameters and empirical Bayes prediction of the true covariate. Normal as well as skewed covariate distributions are simulated and inference is performed based on both maximum likelihood assuming normality and NPMLE. Both estimators are unbiased and have similar root mean square errors when the true covariate is normal. With a skewed covariate, the conventional estimator is biased but has a smaller mean square error than the NPMLE. NPMLE produces substantially improved empirical Bayes predictions of the true covariate when its distribution is skewed.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X03st056oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st056oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

当协变量测量有误差时,基于传统广义线性模型的推理可能会产生回归参数的偏估计。这个问题可以通过使用广义线性潜在和混合模型(GLLAMM)来潜在地纠正,包括观测和真实协变量之间关系的测量模型。然而,模型通常是在假设真协变量和测量误差都是正态分布的情况下进行估计的,尽管在实践中经常观察到偏态协变量分布。本文通过发展GLLAMMs的非参数极大似然估计(NPMLE),放宽真协变量的正态性假设。该方法用于估计膳食纤维摄入量对冠心病的影响。我们还评估了回归参数估计和真协变量的经验贝叶斯预测的性能。模拟正态和偏态协变量分布,并基于最大似然假设正态和NPMLE进行推理。当真正的协变量为正态时,两个估计量都是无偏的,并且具有相似的均方根误差。对于偏态协变量,传统估计量是有偏的,但其均方误差比NPMLE小。当其分布偏斜时,NPMLE对真协变量产生显著改进的经验贝叶斯预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation
When covariates are measured with error, inference based on conventional generalized linear models can yield biased estimates of regression parameters. This problem can potentially be rectified by using generalized linear latent and mixed models (GLLAMM), including a measurement model for the relationship between observed and true covariates. However, the models are typically estimated under the assumption that both the true covariates and the measurement errors are normally distributed, although skewed covariate distributions are often observed in practice. In this article we relax the normality assumption for the true covariates by developing nonparametric maximum likelihood estimation (NPMLE) for GLLAMMs. The methodology is applied to estimating the effect of dietary fibre intake on coronary heart disease. We also assess the performance of estimation of regression parameters and empirical Bayes prediction of the true covariate. Normal as well as skewed covariate distributions are simulated and inference is performed based on both maximum likelihood assuming normality and NPMLE. Both estimators are unbiased and have similar root mean square errors when the true covariate is normal. With a skewed covariate, the conventional estimator is biased but has a smaller mean square error than the NPMLE. NPMLE produces substantially improved empirical Bayes predictions of the true covariate when its distribution is skewed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1