掌握参数化物体三维点云模型的假设生成

K. Varadarajan, Ishaan Gupta, M. Vincze
{"title":"掌握参数化物体三维点云模型的假设生成","authors":"K. Varadarajan, Ishaan Gupta, M. Vincze","doi":"10.1109/URAI.2011.6172974","DOIUrl":null,"url":null,"abstract":"Grasping by Components (GBC) is a very important component of any scalable and holistic grasping system that abstracts point cloud object data to work with arbitrary shapes with no apriori data. Superquadric representation of point cloud data is a suitable parametric method for representing and manipulating point cloud data. Most Superquadrics based grasp hypotheses generation methods perform the step of classifying the parametric shapes into one of different simple shapes with apriori established grasp hypotheses. Such a method is suitable for simple scenarios. But for a holistic and scalable grasping system, direct grasp hypothesis generation from Superquadric representation is crucial. In this paper, we present an algorithm to directly estimate grasp points and approach vectors from Superquadric parameters. We also present results for a number of complex Superquadric shapes and show that the results are in line with grasp hypotheses conventionally generated by humans.","PeriodicalId":385925,"journal":{"name":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grasp hypothesis generation for parametric object 3D point cloud models\",\"authors\":\"K. Varadarajan, Ishaan Gupta, M. Vincze\",\"doi\":\"10.1109/URAI.2011.6172974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grasping by Components (GBC) is a very important component of any scalable and holistic grasping system that abstracts point cloud object data to work with arbitrary shapes with no apriori data. Superquadric representation of point cloud data is a suitable parametric method for representing and manipulating point cloud data. Most Superquadrics based grasp hypotheses generation methods perform the step of classifying the parametric shapes into one of different simple shapes with apriori established grasp hypotheses. Such a method is suitable for simple scenarios. But for a holistic and scalable grasping system, direct grasp hypothesis generation from Superquadric representation is crucial. In this paper, we present an algorithm to directly estimate grasp points and approach vectors from Superquadric parameters. We also present results for a number of complex Superquadric shapes and show that the results are in line with grasp hypotheses conventionally generated by humans.\",\"PeriodicalId\":385925,\"journal\":{\"name\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2011.6172974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2011.6172974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

组件抓取(GBC)是任何可扩展的整体抓取系统的一个重要组成部分,它将点云对象数据抽象到没有先验数据的任意形状。点云数据的超二次表示是表示和操作点云数据的一种合适的参数化方法。大多数基于超二次曲面的抓取假设生成方法都是通过先验建立的抓取假设将参数形状分类为不同的简单形状之一。这种方法适用于简单的场景。但是对于一个整体的、可扩展的抓取系统,从超二次表示中直接生成抓取假设是至关重要的。本文提出了一种从超二次参数中直接估计抓取点和逼近向量的算法。我们还提出了一些复杂的超二次曲面的结果,并表明结果符合人类传统上产生的抓取假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grasp hypothesis generation for parametric object 3D point cloud models
Grasping by Components (GBC) is a very important component of any scalable and holistic grasping system that abstracts point cloud object data to work with arbitrary shapes with no apriori data. Superquadric representation of point cloud data is a suitable parametric method for representing and manipulating point cloud data. Most Superquadrics based grasp hypotheses generation methods perform the step of classifying the parametric shapes into one of different simple shapes with apriori established grasp hypotheses. Such a method is suitable for simple scenarios. But for a holistic and scalable grasping system, direct grasp hypothesis generation from Superquadric representation is crucial. In this paper, we present an algorithm to directly estimate grasp points and approach vectors from Superquadric parameters. We also present results for a number of complex Superquadric shapes and show that the results are in line with grasp hypotheses conventionally generated by humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
People tracking method for a mobile robot with laser scanner and omni directional camera Building a hierarchical robot task from multiple task procedures Probabilistic shape vision for embedded systems Inverse Kinematics solution of PUMA 560 robot arm using ANFIS Implementation of smartphone environment remote control and monitoring system for Android operating system-based robot platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1