《奥赛罗》的共同进化时间差异学习

M. Szubert, Wojciech Jaśkowski, K. Krawiec
{"title":"《奥赛罗》的共同进化时间差异学习","authors":"M. Szubert, Wojciech Jaśkowski, K. Krawiec","doi":"10.1109/CIG.2009.5286486","DOIUrl":null,"url":null,"abstract":"This paper presents Coevolutionary Temporal Difference Learning (CTDL), a novel way of hybridizing co-evolutionary search with reinforcement learning that works by interlacing one-population competitive coevolution with temporal difference learning. The coevolutionary part of the algorithm provides for exploration of the solution space, while the temporal difference learning performs its exploitation by local search. We apply CTDL to the board game of Othello, using weighted piece counter for representing players' strategies. The results of an extensive computational experiment demonstrate CTDL's superiority when compared to coevolution and reinforcement learning alone, particularly when coevolution maintains an archive to provide historical progress. The paper investigates the role of the relative intensity of coevolutionary search and temporal difference search, which turns out to be an essential parameter. The formulation of CTDL leads also to the introduction of Lamarckian form of coevolution, which we discuss in detail.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Coevolutionary Temporal Difference Learning for Othello\",\"authors\":\"M. Szubert, Wojciech Jaśkowski, K. Krawiec\",\"doi\":\"10.1109/CIG.2009.5286486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Coevolutionary Temporal Difference Learning (CTDL), a novel way of hybridizing co-evolutionary search with reinforcement learning that works by interlacing one-population competitive coevolution with temporal difference learning. The coevolutionary part of the algorithm provides for exploration of the solution space, while the temporal difference learning performs its exploitation by local search. We apply CTDL to the board game of Othello, using weighted piece counter for representing players' strategies. The results of an extensive computational experiment demonstrate CTDL's superiority when compared to coevolution and reinforcement learning alone, particularly when coevolution maintains an archive to provide historical progress. The paper investigates the role of the relative intensity of coevolutionary search and temporal difference search, which turns out to be an essential parameter. The formulation of CTDL leads also to the introduction of Lamarckian form of coevolution, which we discuss in detail.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种将协同进化搜索与强化学习相结合的新方法——共同进化时间差异学习(CTDL),该方法将单种群竞争共同进化与时间差异学习相结合。算法的协同进化部分提供了对解空间的探索,而时间差分学习则通过局部搜索来实现对解空间的利用。我们将CTDL应用到棋盘游戏《奥赛罗》中,使用加权棋子计数器来表示玩家的策略。一项广泛的计算实验结果表明,与单独的共同进化和强化学习相比,CTDL具有优势,特别是当共同进化维护一个档案以提供历史进展时。本文研究了共同进化搜索的相对强度和时间差异搜索的作用,这是一个重要的参数。CTDL的表述也导致了拉马克形式的共同进化的引入,我们对此进行了详细的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coevolutionary Temporal Difference Learning for Othello
This paper presents Coevolutionary Temporal Difference Learning (CTDL), a novel way of hybridizing co-evolutionary search with reinforcement learning that works by interlacing one-population competitive coevolution with temporal difference learning. The coevolutionary part of the algorithm provides for exploration of the solution space, while the temporal difference learning performs its exploitation by local search. We apply CTDL to the board game of Othello, using weighted piece counter for representing players' strategies. The results of an extensive computational experiment demonstrate CTDL's superiority when compared to coevolution and reinforcement learning alone, particularly when coevolution maintains an archive to provide historical progress. The paper investigates the role of the relative intensity of coevolutionary search and temporal difference search, which turns out to be an essential parameter. The formulation of CTDL leads also to the introduction of Lamarckian form of coevolution, which we discuss in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1