N-BEATS用于心功能障碍分类

B. Puszkarski, K. Hryniów, G. Sarwas
{"title":"N-BEATS用于心功能障碍分类","authors":"B. Puszkarski, K. Hryniów, G. Sarwas","doi":"10.23919/cinc53138.2021.9662740","DOIUrl":null,"url":null,"abstract":"Introduction: Recurrent Neural Networks are useful tools for the prediction and classification of ECG problems. The most commonly used network for such a solution is Long Short-Term Memory (LSTM) architecture. This study aims to assess if another state-of-the-art solution, Neural Basis Expansion Analysis for Interpretable Time Series (N-BEATS), can be adopted to diagnose the same cardiac problems. In addition, a comparison is conducted for a different number of electrocardiogram leads. Methods: Two architectures were tested for performance and dimension reduction problems, both in variants consisting of blended branches, allowing retaining accuracy while reducing the computational capacity needed. Results: Our team's (WEAIT) entry was scored incorrectly due to unexpected formatting in outputs; hence only results from cross-validation are presented. LSTM outperforms N-BEATS in terms of multi-label classification, data set resilience, and obtained challenge metrics. Still, N-BEATS can obtain acceptable results and outperforms LSTM in terms of complexity and speed. Conclusions: This paper features a novel approach of using the N-BEATS, which was previously used only for forecasting, to classify ECG signals with success. While N-BEATS multi-label classification capacity is lower than LSTM, its speed allows it to be used on wearable devices.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"68 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"N-BEATS for Heart Dysfunction Classification\",\"authors\":\"B. Puszkarski, K. Hryniów, G. Sarwas\",\"doi\":\"10.23919/cinc53138.2021.9662740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Recurrent Neural Networks are useful tools for the prediction and classification of ECG problems. The most commonly used network for such a solution is Long Short-Term Memory (LSTM) architecture. This study aims to assess if another state-of-the-art solution, Neural Basis Expansion Analysis for Interpretable Time Series (N-BEATS), can be adopted to diagnose the same cardiac problems. In addition, a comparison is conducted for a different number of electrocardiogram leads. Methods: Two architectures were tested for performance and dimension reduction problems, both in variants consisting of blended branches, allowing retaining accuracy while reducing the computational capacity needed. Results: Our team's (WEAIT) entry was scored incorrectly due to unexpected formatting in outputs; hence only results from cross-validation are presented. LSTM outperforms N-BEATS in terms of multi-label classification, data set resilience, and obtained challenge metrics. Still, N-BEATS can obtain acceptable results and outperforms LSTM in terms of complexity and speed. Conclusions: This paper features a novel approach of using the N-BEATS, which was previously used only for forecasting, to classify ECG signals with success. While N-BEATS multi-label classification capacity is lower than LSTM, its speed allows it to be used on wearable devices.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"68 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍:递归神经网络是预测和分类心电图问题的有用工具。这种解决方案最常用的网络是长短期记忆(LSTM)架构。本研究旨在评估是否可以采用另一种最先进的解决方案,可解释时间序列的神经基础扩展分析(N-BEATS)来诊断相同的心脏问题。此外,还对不同数量的心电图导联进行了比较。方法:测试了两种架构的性能和降维问题,这两种架构都是由混合分支组成的变体,在保持准确性的同时减少了所需的计算能力。结果:由于输出格式意外,我们团队(WEAIT)的参赛作品被错误评分;因此,只有交叉验证的结果才会出现。LSTM在多标签分类、数据集弹性和获得的挑战指标方面优于N-BEATS。尽管如此,N-BEATS仍然可以获得可接受的结果,并且在复杂性和速度方面优于LSTM。结论:本文采用了一种使用N-BEATS的新方法,该方法以前仅用于预测,成功地对心电信号进行了分类。虽然N-BEATS的多标签分类能力低于LSTM,但其速度允许其在可穿戴设备上使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N-BEATS for Heart Dysfunction Classification
Introduction: Recurrent Neural Networks are useful tools for the prediction and classification of ECG problems. The most commonly used network for such a solution is Long Short-Term Memory (LSTM) architecture. This study aims to assess if another state-of-the-art solution, Neural Basis Expansion Analysis for Interpretable Time Series (N-BEATS), can be adopted to diagnose the same cardiac problems. In addition, a comparison is conducted for a different number of electrocardiogram leads. Methods: Two architectures were tested for performance and dimension reduction problems, both in variants consisting of blended branches, allowing retaining accuracy while reducing the computational capacity needed. Results: Our team's (WEAIT) entry was scored incorrectly due to unexpected formatting in outputs; hence only results from cross-validation are presented. LSTM outperforms N-BEATS in terms of multi-label classification, data set resilience, and obtained challenge metrics. Still, N-BEATS can obtain acceptable results and outperforms LSTM in terms of complexity and speed. Conclusions: This paper features a novel approach of using the N-BEATS, which was previously used only for forecasting, to classify ECG signals with success. While N-BEATS multi-label classification capacity is lower than LSTM, its speed allows it to be used on wearable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1