低信噪比环境下两阶段稀疏重建的到达方向估计

Koredianto Usman, R. Magdalena, M. Ramdhani
{"title":"低信噪比环境下两阶段稀疏重建的到达方向估计","authors":"Koredianto Usman, R. Magdalena, M. Ramdhani","doi":"10.1109/ICCEREC.2018.8712106","DOIUrl":null,"url":null,"abstract":"Sparse-based reconstruction for direction of arrival estimation (DoA) offers an advantage of small data size compared to the conventional DoA estimation algorithm such as MVDR, MUSIC, or ESPRIT. Sparse-based reconstruction algorithm can even estimated the DoA using one snapshot. Given this advantage, the sparse-based reconstruction algorithms such as $L$1-norm minimization using CVX-programming or greedy algorithm usually suffers in high noise environment (low SNR) which manifest by a lot of false spikes in DoA estimation spectrum. In this paper we proposed two-stages sparse reconstruction method to estimate the DoA to mitigate this problem. In this scheme, DoA is estimated twice using a greedy based algorithm to get a high resolution DoA estimate, and then the false spikes are removed using the L1 - L2 algorithm. Compared to the conventional method, the proposed method has advantage of much smaller data and robust in low noise condition.","PeriodicalId":250054,"journal":{"name":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direction of Arrival Estimation in Low SNR Environment using Two Stages Sparse Reconstruction\",\"authors\":\"Koredianto Usman, R. Magdalena, M. Ramdhani\",\"doi\":\"10.1109/ICCEREC.2018.8712106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse-based reconstruction for direction of arrival estimation (DoA) offers an advantage of small data size compared to the conventional DoA estimation algorithm such as MVDR, MUSIC, or ESPRIT. Sparse-based reconstruction algorithm can even estimated the DoA using one snapshot. Given this advantage, the sparse-based reconstruction algorithms such as $L$1-norm minimization using CVX-programming or greedy algorithm usually suffers in high noise environment (low SNR) which manifest by a lot of false spikes in DoA estimation spectrum. In this paper we proposed two-stages sparse reconstruction method to estimate the DoA to mitigate this problem. In this scheme, DoA is estimated twice using a greedy based algorithm to get a high resolution DoA estimate, and then the false spikes are removed using the L1 - L2 algorithm. Compared to the conventional method, the proposed method has advantage of much smaller data and robust in low noise condition.\",\"PeriodicalId\":250054,\"journal\":{\"name\":\"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEREC.2018.8712106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2018.8712106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的DoA估计算法(如MVDR、MUSIC或ESPRIT)相比,基于稀疏的到达方向估计(DoA)重建具有数据量小的优点。基于稀疏的重建算法甚至可以使用一个快照估计DoA。考虑到这一优势,基于稀疏的重构算法,如使用cvx编程或贪心算法的L - 1范数最小化算法,通常在高噪声环境(低信噪比)下存在大量的DoA估计谱假尖峰。为了解决这一问题,本文提出了两阶段稀疏重建方法来估计DoA。在该方案中,首先使用贪婪算法对DoA进行两次估计,得到高分辨率的DoA估计,然后使用L1 - L2算法去除假峰值。与传统方法相比,该方法具有数据量小、低噪声条件下的鲁棒性好等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direction of Arrival Estimation in Low SNR Environment using Two Stages Sparse Reconstruction
Sparse-based reconstruction for direction of arrival estimation (DoA) offers an advantage of small data size compared to the conventional DoA estimation algorithm such as MVDR, MUSIC, or ESPRIT. Sparse-based reconstruction algorithm can even estimated the DoA using one snapshot. Given this advantage, the sparse-based reconstruction algorithms such as $L$1-norm minimization using CVX-programming or greedy algorithm usually suffers in high noise environment (low SNR) which manifest by a lot of false spikes in DoA estimation spectrum. In this paper we proposed two-stages sparse reconstruction method to estimate the DoA to mitigate this problem. In this scheme, DoA is estimated twice using a greedy based algorithm to get a high resolution DoA estimate, and then the false spikes are removed using the L1 - L2 algorithm. Compared to the conventional method, the proposed method has advantage of much smaller data and robust in low noise condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compressive Sensing for Image Watermarking Discrete Wavelet Transform and Spread Spectrum Direction of Arrival Estimation in Low SNR Environment using Two Stages Sparse Reconstruction Microstrip Antenna and Tumbling Simulation for CubeSat on Inter-Satellite Link (ISL) System Detection of Pterygium Disease Using Forward Chaining and Viola Jones Algorithm Design of Single Poly Flash Memory Cell with Power Reduction Technique at Program Mode in 65nm CMOS Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1