智能天空地协同计算网络

Shahnila Rahim, Limei Peng
{"title":"智能天空地协同计算网络","authors":"Shahnila Rahim, Limei Peng","doi":"10.1109/IOTM.001.2200275","DOIUrl":null,"url":null,"abstract":"The space-air-ground collaborative computing networks (SAGCCN) are promising in providing full connectivity for 5G-Advanced and 6G-driven IoT applications. In particular, the SAGCCN can flexibly integrate the communication and computation resources from terrestrial to the sky, thus providing a viable solution for seamless communication and computation services for massive IoT applications. This article discusses the intelligent technologies required to enable full intelligence in data collection and offloading in SAGCCN. In particular, several machine learning-based trajectory planning scenarios are discussed in detail. Finally, this article explores the challenges and future research opportunities in the area of aerial computing.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Space-Air-Ground Collaborative Computing Networks\",\"authors\":\"Shahnila Rahim, Limei Peng\",\"doi\":\"10.1109/IOTM.001.2200275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The space-air-ground collaborative computing networks (SAGCCN) are promising in providing full connectivity for 5G-Advanced and 6G-driven IoT applications. In particular, the SAGCCN can flexibly integrate the communication and computation resources from terrestrial to the sky, thus providing a viable solution for seamless communication and computation services for massive IoT applications. This article discusses the intelligent technologies required to enable full intelligence in data collection and offloading in SAGCCN. In particular, several machine learning-based trajectory planning scenarios are discussed in detail. Finally, this article explores the challenges and future research opportunities in the area of aerial computing.\",\"PeriodicalId\":235472,\"journal\":{\"name\":\"IEEE Internet of Things Magazine\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOTM.001.2200275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2200275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

天空地协同计算网络(SAGCCN)有望为5G-Advanced和6g驱动的物联网应用提供全面连接。特别是,SAGCCN可以灵活整合从地面到天空的通信和计算资源,从而为大规模物联网应用的无缝通信和计算服务提供可行的解决方案。本文讨论了在SAGCCN中实现完全智能的数据收集和卸载所需的智能技术。特别是,详细讨论了几种基于机器学习的轨迹规划场景。最后,本文探讨了航空计算领域的挑战和未来的研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Space-Air-Ground Collaborative Computing Networks
The space-air-ground collaborative computing networks (SAGCCN) are promising in providing full connectivity for 5G-Advanced and 6G-driven IoT applications. In particular, the SAGCCN can flexibly integrate the communication and computation resources from terrestrial to the sky, thus providing a viable solution for seamless communication and computation services for massive IoT applications. This article discusses the intelligent technologies required to enable full intelligence in data collection and offloading in SAGCCN. In particular, several machine learning-based trajectory planning scenarios are discussed in detail. Finally, this article explores the challenges and future research opportunities in the area of aerial computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitous Integrated Sensing and Communications for Massive MIMO LEO Satellite Systems AI for Critical Infrastructure Security: Concepts, Challenges, and Future Directions Mentor's Musings on Integrated Sensing & Communication - A Major Leap Towards an Ubiquitous IoT Paradigm IEEE Medala of Honor Cover 4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1