模式分类的联合协同表示与判别投影

Junyu Li, Haoliang Yuan, L. L. Lai, Yiu-ming Cheung
{"title":"模式分类的联合协同表示与判别投影","authors":"Junyu Li, Haoliang Yuan, L. L. Lai, Yiu-ming Cheung","doi":"10.1109/CIS2018.2018.00035","DOIUrl":null,"url":null,"abstract":"Representation-based classifiers have shown the impressive results for pattern classification. In this paper, we propose a joint collaborative representation and discriminative projection model (JCRDP) for subspace learning. We aim to seek a linear projection matrix to effectively reveal or maintain the underlying structure of original data and well fit collaborative representation classifier simultaneously. Unlike previous representation-based subspace learning methods, in which the linear reconstruction and the generalized eigenvalue decomposition are two independent steps, our proposed JCRDP integrates these two tasks into one single optimization step to learn a more discriminative linear projection matrix. To effectively solve JCRDP, we develop an alternative strategy to deal with the optimization problem. Extensive experimental results demonstrate the effectiveness of our proposed method.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Collaborative Representation and Discriminative Projection for Pattern Classification\",\"authors\":\"Junyu Li, Haoliang Yuan, L. L. Lai, Yiu-ming Cheung\",\"doi\":\"10.1109/CIS2018.2018.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation-based classifiers have shown the impressive results for pattern classification. In this paper, we propose a joint collaborative representation and discriminative projection model (JCRDP) for subspace learning. We aim to seek a linear projection matrix to effectively reveal or maintain the underlying structure of original data and well fit collaborative representation classifier simultaneously. Unlike previous representation-based subspace learning methods, in which the linear reconstruction and the generalized eigenvalue decomposition are two independent steps, our proposed JCRDP integrates these two tasks into one single optimization step to learn a more discriminative linear projection matrix. To effectively solve JCRDP, we develop an alternative strategy to deal with the optimization problem. Extensive experimental results demonstrate the effectiveness of our proposed method.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于表示的分类器在模式分类方面显示了令人印象深刻的结果。本文提出了一种用于子空间学习的联合协同表示与判别投影模型(JCRDP)。我们的目标是寻求一个线性投影矩阵,以有效地揭示或保持原始数据的底层结构,同时很好地适合协同表示分类器。不同于以往基于表示的子空间学习方法,线性重构和广义特征值分解是两个独立的步骤,我们提出的JCRDP将这两个任务集成到一个优化步骤中,以学习更具判别性的线性投影矩阵。为了有效地解决JCRDP问题,我们开发了一种替代策略来处理优化问题。大量的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Collaborative Representation and Discriminative Projection for Pattern Classification
Representation-based classifiers have shown the impressive results for pattern classification. In this paper, we propose a joint collaborative representation and discriminative projection model (JCRDP) for subspace learning. We aim to seek a linear projection matrix to effectively reveal or maintain the underlying structure of original data and well fit collaborative representation classifier simultaneously. Unlike previous representation-based subspace learning methods, in which the linear reconstruction and the generalized eigenvalue decomposition are two independent steps, our proposed JCRDP integrates these two tasks into one single optimization step to learn a more discriminative linear projection matrix. To effectively solve JCRDP, we develop an alternative strategy to deal with the optimization problem. Extensive experimental results demonstrate the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Real-Time Location Privacy Protection Method Based on Space Transformation Cryptanalysis of Kumar's Remote User Authentication Scheme with Smart Card Off-Topic Text Detection Based on Neural Networks Combined with Text Features Research of X Ray Image Recognition Based on Neural Network CFO Algorithm Using Niche and Opposition-Based Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1