设计个性化的学习环境——学习分析的作用

Aleksandra Klašnja-Milićević, M. Ivanović, Bela Stantic
{"title":"设计个性化的学习环境——学习分析的作用","authors":"Aleksandra Klašnja-Milićević, M. Ivanović, Bela Stantic","doi":"10.1142/s219688882050013x","DOIUrl":null,"url":null,"abstract":"Learning analytics, as a rapidly evolving field, offers an encouraging approach with the aim of understanding, optimizing and enhancing learning process. Learners have the capabilities to interact with the learning analytics system through adequate user interface. Such systems enables various features such as learning recommendations, visualizations, reminders, rating and self-assessments possibilities. This paper proposes a framework for learning analytics aimed to improve personalized learning environments, encouraging the learner’s skills to monitor, adapt, and improve their own learning. It is an attempt to articulate the characterizing properties that reveals the association between learning analytics and personalized learning environment. In order to verify data analysis approaches and to determine the validity and accuracy of a learning analytics, and its corresponding to learning profiles, a case study was performed. The findings indicate that educational data for learning analytics are context specific and variables carry different meanings and can have different implications on learning success prediction.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Designing Personalized Learning Environments - The Role of Learning Analytics\",\"authors\":\"Aleksandra Klašnja-Milićević, M. Ivanović, Bela Stantic\",\"doi\":\"10.1142/s219688882050013x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning analytics, as a rapidly evolving field, offers an encouraging approach with the aim of understanding, optimizing and enhancing learning process. Learners have the capabilities to interact with the learning analytics system through adequate user interface. Such systems enables various features such as learning recommendations, visualizations, reminders, rating and self-assessments possibilities. This paper proposes a framework for learning analytics aimed to improve personalized learning environments, encouraging the learner’s skills to monitor, adapt, and improve their own learning. It is an attempt to articulate the characterizing properties that reveals the association between learning analytics and personalized learning environment. In order to verify data analysis approaches and to determine the validity and accuracy of a learning analytics, and its corresponding to learning profiles, a case study was performed. The findings indicate that educational data for learning analytics are context specific and variables carry different meanings and can have different implications on learning success prediction.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s219688882050013x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s219688882050013x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

学习分析作为一个快速发展的领域,为理解、优化和增强学习过程提供了一种令人鼓舞的方法。学习者有能力通过适当的用户界面与学习分析系统进行交互。这样的系统支持各种功能,如学习推荐、可视化、提醒、评级和自我评估的可能性。本文提出了一个学习分析的框架,旨在改善个性化的学习环境,鼓励学习者监控、适应和改进自己学习的技能。它试图阐明揭示学习分析和个性化学习环境之间关联的特征属性。为了验证数据分析方法,确定学习分析及其相应的学习概况的有效性和准确性,进行了一个案例研究。研究结果表明,用于学习分析的教育数据是特定于上下文的,变量具有不同的含义,并且可以对学习成功预测产生不同的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Personalized Learning Environments - The Role of Learning Analytics
Learning analytics, as a rapidly evolving field, offers an encouraging approach with the aim of understanding, optimizing and enhancing learning process. Learners have the capabilities to interact with the learning analytics system through adequate user interface. Such systems enables various features such as learning recommendations, visualizations, reminders, rating and self-assessments possibilities. This paper proposes a framework for learning analytics aimed to improve personalized learning environments, encouraging the learner’s skills to monitor, adapt, and improve their own learning. It is an attempt to articulate the characterizing properties that reveals the association between learning analytics and personalized learning environment. In order to verify data analysis approaches and to determine the validity and accuracy of a learning analytics, and its corresponding to learning profiles, a case study was performed. The findings indicate that educational data for learning analytics are context specific and variables carry different meanings and can have different implications on learning success prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1