质量意识视频内容分析策略

A. Reibman
{"title":"质量意识视频内容分析策略","authors":"A. Reibman","doi":"10.1109/SSIAI.2018.8470354","DOIUrl":null,"url":null,"abstract":"Recent research in video analytics promises the capability to automatically detect and extract information from video. Potential tasks include object and pedestrian detection, object and face recognition, motion detection, object tracking, as well as background subtraction and activity recognition. However, in many instances, the quality of the video from which information is to be extracted is not very high. This may be because of system constraints (like a bandwidth constraint or VHS recorder), environmental conditions (fog or low light), or a poor camera (wobbly/moving camera, limited FOV, or just a low-quality lens).","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"STRATEGIES FOR QUALITY-AWARE VIDEO CONTENT ANALYTICS\",\"authors\":\"A. Reibman\",\"doi\":\"10.1109/SSIAI.2018.8470354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research in video analytics promises the capability to automatically detect and extract information from video. Potential tasks include object and pedestrian detection, object and face recognition, motion detection, object tracking, as well as background subtraction and activity recognition. However, in many instances, the quality of the video from which information is to be extracted is not very high. This may be because of system constraints (like a bandwidth constraint or VHS recorder), environmental conditions (fog or low light), or a poor camera (wobbly/moving camera, limited FOV, or just a low-quality lens).\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近在视频分析方面的研究承诺能够自动检测并从视频中提取信息。潜在的任务包括物体和行人检测,物体和人脸识别,运动检测,物体跟踪,以及背景减去和活动识别。然而,在许多情况下,要从中提取信息的视频的质量不是很高。这可能是由于系统限制(如带宽限制或VHS录像机),环境条件(雾或弱光),或不良相机(晃动/移动相机,有限的视场,或只是一个低质量的镜头)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STRATEGIES FOR QUALITY-AWARE VIDEO CONTENT ANALYTICS
Recent research in video analytics promises the capability to automatically detect and extract information from video. Potential tasks include object and pedestrian detection, object and face recognition, motion detection, object tracking, as well as background subtraction and activity recognition. However, in many instances, the quality of the video from which information is to be extracted is not very high. This may be because of system constraints (like a bandwidth constraint or VHS recorder), environmental conditions (fog or low light), or a poor camera (wobbly/moving camera, limited FOV, or just a low-quality lens).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1