{"title":"来自模块化平方根的非并行和非交互式客户端谜题","authors":"Yves Igor Jerschow, M. Mauve","doi":"10.1109/ARES.2011.27","DOIUrl":null,"url":null,"abstract":"Denial of Service (DoS) attacks aiming to exhaust the resources of a server by overwhelming it with bogus requests have become a serious threat. Especially protocols that rely on public key cryptography and perform expensive authentication handshakes may be an easy target. A well-known countermeasure against DoS attacks are client puzzles. The victimized server demands from the clients to commit computing resources before it processes their requests. To get service, a client must solve a cryptographic puzzle and submit the right solution. Existing client puzzle schemes have some drawbacks. They are either parallelizable, coarse-grained or can be used only interactively. In case of interactive client puzzles where the server poses the challenge an attacker might mount a counterattack on the clients by injecting fake packets containing bogus puzzle parameters. In this paper we introduce a novel scheme for client puzzles which relies on the computation of square roots modulo a prime. Modular square root puzzles are non-parallelizable, i.e., the solution cannot be obtained faster than scheduled by distributing the puzzle to multiple machines or CPU cores, and they can be employed both interactively and non-interactively. Our puzzles provide polynomial granularity and compact solution and verification functions. Benchmark results demonstrate the feasibility of our approach to mitigate DoS attacks on hosts in 1 or even 10 GBit networks. In addition, we show how to raise the efficiency of our puzzle scheme by introducing a bandwidth-based cost factor for the client.","PeriodicalId":254443,"journal":{"name":"2011 Sixth International Conference on Availability, Reliability and Security","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Non-Parallelizable and Non-Interactive Client Puzzles from Modular Square Roots\",\"authors\":\"Yves Igor Jerschow, M. Mauve\",\"doi\":\"10.1109/ARES.2011.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denial of Service (DoS) attacks aiming to exhaust the resources of a server by overwhelming it with bogus requests have become a serious threat. Especially protocols that rely on public key cryptography and perform expensive authentication handshakes may be an easy target. A well-known countermeasure against DoS attacks are client puzzles. The victimized server demands from the clients to commit computing resources before it processes their requests. To get service, a client must solve a cryptographic puzzle and submit the right solution. Existing client puzzle schemes have some drawbacks. They are either parallelizable, coarse-grained or can be used only interactively. In case of interactive client puzzles where the server poses the challenge an attacker might mount a counterattack on the clients by injecting fake packets containing bogus puzzle parameters. In this paper we introduce a novel scheme for client puzzles which relies on the computation of square roots modulo a prime. Modular square root puzzles are non-parallelizable, i.e., the solution cannot be obtained faster than scheduled by distributing the puzzle to multiple machines or CPU cores, and they can be employed both interactively and non-interactively. Our puzzles provide polynomial granularity and compact solution and verification functions. Benchmark results demonstrate the feasibility of our approach to mitigate DoS attacks on hosts in 1 or even 10 GBit networks. In addition, we show how to raise the efficiency of our puzzle scheme by introducing a bandwidth-based cost factor for the client.\",\"PeriodicalId\":254443,\"journal\":{\"name\":\"2011 Sixth International Conference on Availability, Reliability and Security\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2011.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Parallelizable and Non-Interactive Client Puzzles from Modular Square Roots
Denial of Service (DoS) attacks aiming to exhaust the resources of a server by overwhelming it with bogus requests have become a serious threat. Especially protocols that rely on public key cryptography and perform expensive authentication handshakes may be an easy target. A well-known countermeasure against DoS attacks are client puzzles. The victimized server demands from the clients to commit computing resources before it processes their requests. To get service, a client must solve a cryptographic puzzle and submit the right solution. Existing client puzzle schemes have some drawbacks. They are either parallelizable, coarse-grained or can be used only interactively. In case of interactive client puzzles where the server poses the challenge an attacker might mount a counterattack on the clients by injecting fake packets containing bogus puzzle parameters. In this paper we introduce a novel scheme for client puzzles which relies on the computation of square roots modulo a prime. Modular square root puzzles are non-parallelizable, i.e., the solution cannot be obtained faster than scheduled by distributing the puzzle to multiple machines or CPU cores, and they can be employed both interactively and non-interactively. Our puzzles provide polynomial granularity and compact solution and verification functions. Benchmark results demonstrate the feasibility of our approach to mitigate DoS attacks on hosts in 1 or even 10 GBit networks. In addition, we show how to raise the efficiency of our puzzle scheme by introducing a bandwidth-based cost factor for the client.