一个由量子计算启发的进化算法支持的神经模型,用于确定波兰电力交易所日前市场的价格

J. Tchórzewski, Dariusz Ruciński
{"title":"一个由量子计算启发的进化算法支持的神经模型,用于确定波兰电力交易所日前市场的价格","authors":"J. Tchórzewski, Dariusz Ruciński","doi":"10.1051/ITMCONF/20192801006","DOIUrl":null,"url":null,"abstract":"The paper contains selected results of research related to the nature and the implementation of the neural model supported by the evolutionary algorithm inspired by quantum calculations for determination of prices at the Polish Power Exchange. Numeric data quoted at the Day Ahead Market in the period of 1st January 2015 to 30th June 2015 were used to train the artificial neural network in the model of the system. Attention was paid to quantization method, dequantization method and the method of quantum calculations. Significant improvement of the neural model supported by the quantum-inspired evolutionary algorithm was obtained compared with the model without quantum inspiration.","PeriodicalId":433898,"journal":{"name":"ITM Web of Conferences","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural model supported by the Evolutionary Algorithm inspired by quantum calculations to determine prices at the Polish Power Exchange Day Ahead Market\",\"authors\":\"J. Tchórzewski, Dariusz Ruciński\",\"doi\":\"10.1051/ITMCONF/20192801006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper contains selected results of research related to the nature and the implementation of the neural model supported by the evolutionary algorithm inspired by quantum calculations for determination of prices at the Polish Power Exchange. Numeric data quoted at the Day Ahead Market in the period of 1st January 2015 to 30th June 2015 were used to train the artificial neural network in the model of the system. Attention was paid to quantization method, dequantization method and the method of quantum calculations. Significant improvement of the neural model supported by the quantum-inspired evolutionary algorithm was obtained compared with the model without quantum inspiration.\",\"PeriodicalId\":433898,\"journal\":{\"name\":\"ITM Web of Conferences\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITM Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ITMCONF/20192801006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITM Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ITMCONF/20192801006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文包含了与波兰电力交易所价格确定的量子计算启发的进化算法支持的神经模型的性质和实现相关的研究结果。利用2015年1月1日至2015年6月30日日内市场报价的数值数据对系统模型中的人工神经网络进行训练。重点介绍了量子化方法、去量子化方法和量子计算方法。采用量子启发进化算法支持的神经网络模型与未采用量子启发的神经网络模型相比有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural model supported by the Evolutionary Algorithm inspired by quantum calculations to determine prices at the Polish Power Exchange Day Ahead Market
The paper contains selected results of research related to the nature and the implementation of the neural model supported by the evolutionary algorithm inspired by quantum calculations for determination of prices at the Polish Power Exchange. Numeric data quoted at the Day Ahead Market in the period of 1st January 2015 to 30th June 2015 were used to train the artificial neural network in the model of the system. Attention was paid to quantization method, dequantization method and the method of quantum calculations. Significant improvement of the neural model supported by the quantum-inspired evolutionary algorithm was obtained compared with the model without quantum inspiration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Price Prediction using Facebook Prophet Drowsiness Detection using EEG signals and Machine Learning Algorithms Aging mechanisms analysis of Graphite/LiNi0.80Co0.15Al0.05O2 lithium-ion batteries among the whole life cycle at different temperatures Android-based object recognition application for visually impaired Conception d’une séquence d’introduction dynamique du produit scalaire via une approche constructiviste intégrant la mécanique et les TIC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1