多层自适应滤波

Z. Faraj, M. Kahla, F. Castanie
{"title":"多层自适应滤波","authors":"Z. Faraj, M. Kahla, F. Castanie","doi":"10.1109/SSAP.1992.246847","DOIUrl":null,"url":null,"abstract":"The structure of the multilayer adaptive filter is similar to that of a multilayer perceptron with an input layer to which signal samples are presented, an output layer where the estimated signal is obtained, and one or more intermediate layers of nodes. This paper describes the multi-layer adaptive algorithm, and numerical examples illustrate its performances.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-layer adaptive filtering\",\"authors\":\"Z. Faraj, M. Kahla, F. Castanie\",\"doi\":\"10.1109/SSAP.1992.246847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure of the multilayer adaptive filter is similar to that of a multilayer perceptron with an input layer to which signal samples are presented, an output layer where the estimated signal is obtained, and one or more intermediate layers of nodes. This paper describes the multi-layer adaptive algorithm, and numerical examples illustrate its performances.<<ETX>>\",\"PeriodicalId\":309407,\"journal\":{\"name\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1992.246847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多层自适应滤波器的结构类似于多层感知器,其输入层用于提供信号样本,输出层用于获得估计信号,以及一个或多个节点中间层。本文介绍了多层自适应算法,并用数值算例说明了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-layer adaptive filtering
The structure of the multilayer adaptive filter is similar to that of a multilayer perceptron with an input layer to which signal samples are presented, an output layer where the estimated signal is obtained, and one or more intermediate layers of nodes. This paper describes the multi-layer adaptive algorithm, and numerical examples illustrate its performances.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear prediction based on higher order statistics by a new criterion Fourth-order cumulant structure forcing: application to blind array processing Wideband spatial processing with wavelet transforms Simultaneous CFAR detection and frequency estimation of a sinusoidal signal in noise Least-squares reconstruction of an image from its noisy observations using the bispectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1