地址读取系统适应本地邮件流

A. Brakensiek, J. Rottland, F. Wallhoff, G. Rigoll
{"title":"地址读取系统适应本地邮件流","authors":"A. Brakensiek, J. Rottland, F. Wallhoff, G. Rigoll","doi":"10.1109/ICDAR.2001.953911","DOIUrl":null,"url":null,"abstract":"A scheme for handwriting adaptation for post offices is described to improve recognition performance of German addresses. The recognition system is based on a tied-mixture hidden Markov model, whose parameters are updated using the expectation maximization technique, the maximum likelihood linear regression algorithm and a new discriminative adaptation technique, the scaled likelihood linear regression. Contrary to the usual approach of adapting a writer-independent system to a specific writer we propose to adapt the system to the writer-independent data of a specific post office. The resulting system for each post office yields up to 16% lower word recognition errors.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptation of an address reading system to local mail streams\",\"authors\":\"A. Brakensiek, J. Rottland, F. Wallhoff, G. Rigoll\",\"doi\":\"10.1109/ICDAR.2001.953911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scheme for handwriting adaptation for post offices is described to improve recognition performance of German addresses. The recognition system is based on a tied-mixture hidden Markov model, whose parameters are updated using the expectation maximization technique, the maximum likelihood linear regression algorithm and a new discriminative adaptation technique, the scaled likelihood linear regression. Contrary to the usual approach of adapting a writer-independent system to a specific writer we propose to adapt the system to the writer-independent data of a specific post office. The resulting system for each post office yields up to 16% lower word recognition errors.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为提高德语地址的识别性能,提出了一种邮局笔迹自适应方案。该识别系统基于一种绑定混合隐马尔可夫模型,该模型的参数更新采用期望最大化技术、最大似然线性回归算法和一种新的判别自适应技术——比例似然线性回归。与将独立于编写器的系统适应于特定编写器的通常方法相反,我们建议将系统适应于特定邮局的独立于编写器的数据。由此产生的每个邮局系统的单词识别错误率可降低16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptation of an address reading system to local mail streams
A scheme for handwriting adaptation for post offices is described to improve recognition performance of German addresses. The recognition system is based on a tied-mixture hidden Markov model, whose parameters are updated using the expectation maximization technique, the maximum likelihood linear regression algorithm and a new discriminative adaptation technique, the scaled likelihood linear regression. Contrary to the usual approach of adapting a writer-independent system to a specific writer we propose to adapt the system to the writer-independent data of a specific post office. The resulting system for each post office yields up to 16% lower word recognition errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1