自动目标识别的融合技术

Syed A. Rizvi, N. Nasrabadi
{"title":"自动目标识别的融合技术","authors":"Syed A. Rizvi, N. Nasrabadi","doi":"10.1109/AIPR.2003.1284244","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate several fusion techniques for designing a composite classifier to improve the performance (probability of correct classification) of FLIR ATR. In this research, we propose to use four ATR algorithms for fusion. The individual performance of the four contributing algorithms ranges from 73.5% to about 77% of probability of correct classification on the testing set. We propose to use Bayes classifier, committee of experts, stacked-generalization, winner-takes-all, and ranking-based fusion techniques for designing the composite classifiers. The experimental results show an improvement of more than 6.5% over the best individual performance.","PeriodicalId":176987,"journal":{"name":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Fusion techniques for automatic target recognition\",\"authors\":\"Syed A. Rizvi, N. Nasrabadi\",\"doi\":\"10.1109/AIPR.2003.1284244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate several fusion techniques for designing a composite classifier to improve the performance (probability of correct classification) of FLIR ATR. In this research, we propose to use four ATR algorithms for fusion. The individual performance of the four contributing algorithms ranges from 73.5% to about 77% of probability of correct classification on the testing set. We propose to use Bayes classifier, committee of experts, stacked-generalization, winner-takes-all, and ranking-based fusion techniques for designing the composite classifiers. The experimental results show an improvement of more than 6.5% over the best individual performance.\",\"PeriodicalId\":176987,\"journal\":{\"name\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2003.1284244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2003.1284244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在本文中,我们研究了几种用于设计复合分类器的融合技术,以提高FLIR - ATR的性能(正确分类概率)。在本研究中,我们建议使用四种ATR算法进行融合。四种贡献算法的单个性能在测试集上的正确分类概率从73.5%到约77%不等。我们建议使用贝叶斯分类器、专家委员会、堆叠泛化、赢者通吃和基于排名的融合技术来设计复合分类器。实验结果表明,比最佳个人成绩提高了6.5%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion techniques for automatic target recognition
In this paper, we investigate several fusion techniques for designing a composite classifier to improve the performance (probability of correct classification) of FLIR ATR. In this research, we propose to use four ATR algorithms for fusion. The individual performance of the four contributing algorithms ranges from 73.5% to about 77% of probability of correct classification on the testing set. We propose to use Bayes classifier, committee of experts, stacked-generalization, winner-takes-all, and ranking-based fusion techniques for designing the composite classifiers. The experimental results show an improvement of more than 6.5% over the best individual performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum image processing (QuIP) Dual band (MWIR/LWIR) hyperspectral imager Fusion techniques for automatic target recognition Perspectives on the fusion of image and non-image data Eigenviews for object recognition in multispectral imaging systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1