图像检索与一个视觉同义词典

Yanzhi Chen, A. Dick, A. Hengel
{"title":"图像检索与一个视觉同义词典","authors":"Yanzhi Chen, A. Dick, A. Hengel","doi":"10.1109/DICTA.2010.11","DOIUrl":null,"url":null,"abstract":"Current state-of-art of image retrieval methods represent images as an unordered collection of local patches, each of which is classified as a \"visual word\" from a fixed vocabulary. This paper presents a simple but innovative way to uncover the spatial relationship between visual words so that we can discover words that represent the same latent topic and thereby improve the retrieval results. The method in this paper is borrowed from text retrieval, and is analogous to a text thesaurus in that it describes a broad set of equivalence relationship between words. We evaluate our method on the popular Oxford Building dataset. This makes it possible to compare our method with previous work on image retrieval, and the results show that our method is comparable to more complex state of the art methods.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image Retrieval with a Visual Thesaurus\",\"authors\":\"Yanzhi Chen, A. Dick, A. Hengel\",\"doi\":\"10.1109/DICTA.2010.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current state-of-art of image retrieval methods represent images as an unordered collection of local patches, each of which is classified as a \\\"visual word\\\" from a fixed vocabulary. This paper presents a simple but innovative way to uncover the spatial relationship between visual words so that we can discover words that represent the same latent topic and thereby improve the retrieval results. The method in this paper is borrowed from text retrieval, and is analogous to a text thesaurus in that it describes a broad set of equivalence relationship between words. We evaluate our method on the popular Oxford Building dataset. This makes it possible to compare our method with previous work on image retrieval, and the results show that our method is comparable to more complex state of the art methods.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前的图像检索方法将图像表示为局部斑块的无序集合,每个局部斑块被分类为固定词汇表中的“视觉词”。本文提出了一种简单而创新的方法来揭示视觉词之间的空间关系,从而发现代表同一潜在主题的词,从而提高检索结果。本文的方法借鉴了文本检索的方法,类似于文本同义词典,它描述了一组广泛的词与词之间的等价关系。我们在流行的牛津大厦数据集上评估了我们的方法。这使得将我们的方法与以前的图像检索工作进行比较成为可能,结果表明我们的方法可以与更复杂的最先进的方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Retrieval with a Visual Thesaurus
Current state-of-art of image retrieval methods represent images as an unordered collection of local patches, each of which is classified as a "visual word" from a fixed vocabulary. This paper presents a simple but innovative way to uncover the spatial relationship between visual words so that we can discover words that represent the same latent topic and thereby improve the retrieval results. The method in this paper is borrowed from text retrieval, and is analogous to a text thesaurus in that it describes a broad set of equivalence relationship between words. We evaluate our method on the popular Oxford Building dataset. This makes it possible to compare our method with previous work on image retrieval, and the results show that our method is comparable to more complex state of the art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1