nas范围内的垂直剖面分析:到达和离开流的水平分段

S. Dorfman, J. Daily, T. Gonzalez, G. Kondo
{"title":"nas范围内的垂直剖面分析:到达和离开流的水平分段","authors":"S. Dorfman, J. Daily, T. Gonzalez, G. Kondo","doi":"10.1109/ICNSURV.2012.6218390","DOIUrl":null,"url":null,"abstract":"Low altitude level flight segments increase fuel burn and emissions for the aircraft flying them. The number and length of level segments flown during arrival and departure operations can be reduced by procedure design which leverages the advantages of Area Navigation (RNAV) to reduce actual level flight. Such design must take into account many factors including terrain, current route of a particular flow of air traffic, other proximate air traffic flows, aircraft equipage, and air traffic control (ATC) needs. Variation of these factors between airports can make comparison difficult, whether between sites or over time. Recent studies, performed by The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) on behalf of the Federal Aviation Administration (FAA), have led to the development of a methodology for analyzing traffic flow vertical profiles for the purpose of reducing fuel burn and emissions in transition airspace. The methodology is flexible enough to be meaningfully applied to airports across the United States National Airspace System (NAS), while still having the specificity to reflect site specific vertical profile improvements. For example, in one recent study using this standardized methodology, over 4,000 traffic flows were identified for 48 airports across the NAS. Results were examined at the Terminal Radar Approach Control (TRACON), airport, flow, and individual segment level of detail, enabling support for national planning efforts as well as local procedure design. Results are typically reviewed in either a tabular format or in an interactive 3-D environment.","PeriodicalId":126055,"journal":{"name":"2012 Integrated Communications, Navigation and Surveillance Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"NAS-wide vertical profile analysis: Level segments in arrival and departure flows\",\"authors\":\"S. Dorfman, J. Daily, T. Gonzalez, G. Kondo\",\"doi\":\"10.1109/ICNSURV.2012.6218390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low altitude level flight segments increase fuel burn and emissions for the aircraft flying them. The number and length of level segments flown during arrival and departure operations can be reduced by procedure design which leverages the advantages of Area Navigation (RNAV) to reduce actual level flight. Such design must take into account many factors including terrain, current route of a particular flow of air traffic, other proximate air traffic flows, aircraft equipage, and air traffic control (ATC) needs. Variation of these factors between airports can make comparison difficult, whether between sites or over time. Recent studies, performed by The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) on behalf of the Federal Aviation Administration (FAA), have led to the development of a methodology for analyzing traffic flow vertical profiles for the purpose of reducing fuel burn and emissions in transition airspace. The methodology is flexible enough to be meaningfully applied to airports across the United States National Airspace System (NAS), while still having the specificity to reflect site specific vertical profile improvements. For example, in one recent study using this standardized methodology, over 4,000 traffic flows were identified for 48 airports across the NAS. Results were examined at the Terminal Radar Approach Control (TRACON), airport, flow, and individual segment level of detail, enabling support for national planning efforts as well as local procedure design. Results are typically reviewed in either a tabular format or in an interactive 3-D environment.\",\"PeriodicalId\":126055,\"journal\":{\"name\":\"2012 Integrated Communications, Navigation and Surveillance Conference\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Integrated Communications, Navigation and Surveillance Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSURV.2012.6218390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Integrated Communications, Navigation and Surveillance Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSURV.2012.6218390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

低空飞行段增加了飞机的燃油消耗和排放。通过程序设计,利用区域导航(RNAV)的优势来减少实际的水平飞行,可以减少在到达和离开操作期间飞行的水平段的数量和长度。这种设计必须考虑许多因素,包括地形、特定空中交通流量的当前路线、其他邻近的空中交通流量、飞机设备和空中交通管制(ATC)需求。这些因素在不同机场之间的差异可能会使比较变得困难,无论是在不同地点之间还是在不同时间之间。最近,MITRE公司高级航空系统开发中心(CAASD)代表联邦航空管理局(FAA)进行了一项研究,开发了一种分析交通流量垂直剖面的方法,以减少过渡空域的燃油消耗和排放。该方法具有足够的灵活性,可以有效地应用于美国国家空域系统(NAS)的各个机场,同时仍然具有反映特定地点垂直剖面改进的特殊性。例如,在最近的一项使用这种标准化方法的研究中,NAS的48个机场确定了超过4,000个交通流量。结果在终端雷达进近控制(TRACON)、机场、流量和个别分段层面进行了详细检查,从而为国家规划工作和地方程序设计提供支持。结果通常以表格格式或交互式3-D环境进行审查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NAS-wide vertical profile analysis: Level segments in arrival and departure flows
Low altitude level flight segments increase fuel burn and emissions for the aircraft flying them. The number and length of level segments flown during arrival and departure operations can be reduced by procedure design which leverages the advantages of Area Navigation (RNAV) to reduce actual level flight. Such design must take into account many factors including terrain, current route of a particular flow of air traffic, other proximate air traffic flows, aircraft equipage, and air traffic control (ATC) needs. Variation of these factors between airports can make comparison difficult, whether between sites or over time. Recent studies, performed by The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) on behalf of the Federal Aviation Administration (FAA), have led to the development of a methodology for analyzing traffic flow vertical profiles for the purpose of reducing fuel burn and emissions in transition airspace. The methodology is flexible enough to be meaningfully applied to airports across the United States National Airspace System (NAS), while still having the specificity to reflect site specific vertical profile improvements. For example, in one recent study using this standardized methodology, over 4,000 traffic flows were identified for 48 airports across the NAS. Results were examined at the Terminal Radar Approach Control (TRACON), airport, flow, and individual segment level of detail, enabling support for national planning efforts as well as local procedure design. Results are typically reviewed in either a tabular format or in an interactive 3-D environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring a flight deck based wake turbulence situational awareness tool From the drawing board to reality: Packaging tomorrow's aviation system Full 4D trajectory management - Ground Industry point of view Dependence of aeromacs interference on airport radiation pattern characteristics A comparison of noise abatement procedures using radar data and simulated flight trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1