{"title":"以用户为中心和无小区的大规模MIMO无线网络中的下行功率控制","authors":"S. Buzzi, A. Zappone","doi":"10.1109/PIMRC.2017.8292293","DOIUrl":null,"url":null,"abstract":"Recently, the so-called cell-free Massive MIMO architecture has been introduced, wherein a very large number of distributed access points (APs) simultaneously and jointly serve a much smaller number of mobile stations (MSs). A variant of the cell-free technique is the user-centric approach, wherein each AP just decodes the MSs that it receives with the largest power. This paper considers both the cell-free and user-centric approaches, and, using an interplay of sequential optimization and alternating optimization, derives downlink power-control algorithms aimed at maximizing either the minimum users' SINR (to ensure fairness), or the system sum-rate. Numerical results show the effectiveness of the proposed algorithms, as well as that the user-centric approach generally outperforms the CF one.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Downlink power control in user-centric and cell-free massive MIMO wireless networks\",\"authors\":\"S. Buzzi, A. Zappone\",\"doi\":\"10.1109/PIMRC.2017.8292293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the so-called cell-free Massive MIMO architecture has been introduced, wherein a very large number of distributed access points (APs) simultaneously and jointly serve a much smaller number of mobile stations (MSs). A variant of the cell-free technique is the user-centric approach, wherein each AP just decodes the MSs that it receives with the largest power. This paper considers both the cell-free and user-centric approaches, and, using an interplay of sequential optimization and alternating optimization, derives downlink power-control algorithms aimed at maximizing either the minimum users' SINR (to ensure fairness), or the system sum-rate. Numerical results show the effectiveness of the proposed algorithms, as well as that the user-centric approach generally outperforms the CF one.\",\"PeriodicalId\":397107,\"journal\":{\"name\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2017.8292293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Downlink power control in user-centric and cell-free massive MIMO wireless networks
Recently, the so-called cell-free Massive MIMO architecture has been introduced, wherein a very large number of distributed access points (APs) simultaneously and jointly serve a much smaller number of mobile stations (MSs). A variant of the cell-free technique is the user-centric approach, wherein each AP just decodes the MSs that it receives with the largest power. This paper considers both the cell-free and user-centric approaches, and, using an interplay of sequential optimization and alternating optimization, derives downlink power-control algorithms aimed at maximizing either the minimum users' SINR (to ensure fairness), or the system sum-rate. Numerical results show the effectiveness of the proposed algorithms, as well as that the user-centric approach generally outperforms the CF one.