基于强化学习的电动汽车充电站收益最大化算法

Stoyan Dimitrov, Redouane Lguensat
{"title":"基于强化学习的电动汽车充电站收益最大化算法","authors":"Stoyan Dimitrov, Redouane Lguensat","doi":"10.1109/MCSI.2014.54","DOIUrl":null,"url":null,"abstract":"This paper presents an online reinforcement learning based application which increases the revenue of one particular electric vehicles (EV) station, connected to a renewable source of energy. Moreover, the proposed application adapts to changes in the trends of the station's average number of customers and their types. Most of the parameters in the model are simulated stochastically and the algorithm used is the Q-learning algorithm. A computer simulation was implemented which demonstrates and confirms the utility of the model.","PeriodicalId":202841,"journal":{"name":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Reinforcement Learning Based Algorithm for the Maximization of EV Charging Station Revenue\",\"authors\":\"Stoyan Dimitrov, Redouane Lguensat\",\"doi\":\"10.1109/MCSI.2014.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an online reinforcement learning based application which increases the revenue of one particular electric vehicles (EV) station, connected to a renewable source of energy. Moreover, the proposed application adapts to changes in the trends of the station's average number of customers and their types. Most of the parameters in the model are simulated stochastically and the algorithm used is the Q-learning algorithm. A computer simulation was implemented which demonstrates and confirms the utility of the model.\",\"PeriodicalId\":202841,\"journal\":{\"name\":\"2014 International Conference on Mathematics and Computers in Sciences and in Industry\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Mathematics and Computers in Sciences and in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSI.2014.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2014.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种基于在线强化学习的应用程序,该应用程序可以增加连接到可再生能源的特定电动汽车(EV)站的收入。此外,所提出的应用程序适应了车站平均客户数量及其类型的变化趋势。模型中的大部分参数是随机模拟的,使用的算法是Q-learning算法。通过计算机仿真验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning Based Algorithm for the Maximization of EV Charging Station Revenue
This paper presents an online reinforcement learning based application which increases the revenue of one particular electric vehicles (EV) station, connected to a renewable source of energy. Moreover, the proposed application adapts to changes in the trends of the station's average number of customers and their types. Most of the parameters in the model are simulated stochastically and the algorithm used is the Q-learning algorithm. A computer simulation was implemented which demonstrates and confirms the utility of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dirichlet Boundary Stabilization of Unstable Mixed Parameter Systems Skin Color Analysis and Segmentation in Complex Outdoor Background Application of the Static and Dynamic Models in Predicting the Future Strength of Portland Cements A New Graphical Password Based on Decoy Image Portions (GP-DIP) True Random Number Generation of very High Goodness-of-Fit and Randomness Qualities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1