具有马尔可夫切换参数的离散时间均值方差投资组合优化

M. V. Araujo, O. Costa
{"title":"具有马尔可夫切换参数的离散时间均值方差投资组合优化","authors":"M. V. Araujo, O. Costa","doi":"10.1109/ACC.2006.1655475","DOIUrl":null,"url":null,"abstract":"In this paper, a discrete-time version of the multi-period mean-variance portfolio selection problem in which the market parameters are subjected to a random regime switching is investigated. We analytically derive an optimal control policy for this mean-variance formulation in a closed form. Such a policy can be obtained by the solution of a set of interconnected Riccatti difference equations. Additionally, an explicit expression for the efficient frontier corresponding to this control law is identified and a numerical example with Brazilian assets is presented","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discrete-time mean-variance portfolio optimization with Markov switching parameters\",\"authors\":\"M. V. Araujo, O. Costa\",\"doi\":\"10.1109/ACC.2006.1655475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a discrete-time version of the multi-period mean-variance portfolio selection problem in which the market parameters are subjected to a random regime switching is investigated. We analytically derive an optimal control policy for this mean-variance formulation in a closed form. Such a policy can be obtained by the solution of a set of interconnected Riccatti difference equations. Additionally, an explicit expression for the efficient frontier corresponding to this control law is identified and a numerical example with Brazilian assets is presented\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1655475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1655475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了市场参数服从随机状态切换的多周期均值-方差投资组合问题的离散时间版本。我们以一种封闭的形式解析地导出了该均值-方差公式的最优控制策略。这种策略可以通过求解一组相互关联的Riccatti差分方程得到。此外,给出了与该控制律相对应的有效边界的显式表达式,并给出了巴西资产的数值算例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete-time mean-variance portfolio optimization with Markov switching parameters
In this paper, a discrete-time version of the multi-period mean-variance portfolio selection problem in which the market parameters are subjected to a random regime switching is investigated. We analytically derive an optimal control policy for this mean-variance formulation in a closed form. Such a policy can be obtained by the solution of a set of interconnected Riccatti difference equations. Additionally, an explicit expression for the efficient frontier corresponding to this control law is identified and a numerical example with Brazilian assets is presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formation stabilization and tracking control of mobile agents using local potential functions Robust fault diagnosis for a satellite large angle attitude system using an iterative neuron PID (INPID) observer Vehicle routing and dispatching for emergency personnel evacuation from off-shore oil platforms Reinforcement learning with supervision by combining multiple learnings and expert advices Improvement of a novel dual-stage large-span track-seeking and track-following method using anti-windup compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1