{"title":"MLLabs-LIG在TempoWiC 2022:一种用于检查时间意义转移的生成方法","authors":"Chenyang Lyu, Yongxin Zhou, Tianbo Ji","doi":"10.18653/v1/2022.evonlp-1.1","DOIUrl":null,"url":null,"abstract":"In this paper, we present our system for the EvoNLP 2022 shared task Temporal Meaning Shift (TempoWiC). Different from the typically used discriminative model, we propose a generative approach based on pre-trained generation models. The basic architecture of our system is a seq2seq model where the input sequence consists of two documents followed by a question asking whether the meaning of target word changed or not, the target output sequence is a declarative sentence describing the meaning of target word changed or not. The experimental results on TempoWiC test set show that our best system (with time information) obtained an accuracy and Marco F-1 score of 68.09% and 62.59% respectively, which ranked 12th among all submitted systems. The results have shown the plausibility of using generation model for WiC tasks, meanwhile also indicate there’s still room for further improvement.","PeriodicalId":158578,"journal":{"name":"Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MLLabs-LIG at TempoWiC 2022: A Generative Approach for Examining Temporal Meaning Shift\",\"authors\":\"Chenyang Lyu, Yongxin Zhou, Tianbo Ji\",\"doi\":\"10.18653/v1/2022.evonlp-1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our system for the EvoNLP 2022 shared task Temporal Meaning Shift (TempoWiC). Different from the typically used discriminative model, we propose a generative approach based on pre-trained generation models. The basic architecture of our system is a seq2seq model where the input sequence consists of two documents followed by a question asking whether the meaning of target word changed or not, the target output sequence is a declarative sentence describing the meaning of target word changed or not. The experimental results on TempoWiC test set show that our best system (with time information) obtained an accuracy and Marco F-1 score of 68.09% and 62.59% respectively, which ranked 12th among all submitted systems. The results have shown the plausibility of using generation model for WiC tasks, meanwhile also indicate there’s still room for further improvement.\",\"PeriodicalId\":158578,\"journal\":{\"name\":\"Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.evonlp-1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.evonlp-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MLLabs-LIG at TempoWiC 2022: A Generative Approach for Examining Temporal Meaning Shift
In this paper, we present our system for the EvoNLP 2022 shared task Temporal Meaning Shift (TempoWiC). Different from the typically used discriminative model, we propose a generative approach based on pre-trained generation models. The basic architecture of our system is a seq2seq model where the input sequence consists of two documents followed by a question asking whether the meaning of target word changed or not, the target output sequence is a declarative sentence describing the meaning of target word changed or not. The experimental results on TempoWiC test set show that our best system (with time information) obtained an accuracy and Marco F-1 score of 68.09% and 62.59% respectively, which ranked 12th among all submitted systems. The results have shown the plausibility of using generation model for WiC tasks, meanwhile also indicate there’s still room for further improvement.