将空间碎片物体从近地轨道移至利用轨道的能源支出

Yu.M. Holdshtein
{"title":"将空间碎片物体从近地轨道移至利用轨道的能源支出","authors":"Yu.M. Holdshtein","doi":"10.15407/itm2023.02.041","DOIUrl":null,"url":null,"abstract":"The ever-increasing clogging of near-Earth space by space debris objects of various sizes significantly limits the possibilities of space activities and poses a great danger to the Earth’s objects. This is especially true for low orbits with altitudes up to 2,000 km. The risk of collision of operating spacecraft with space debris threatens their functioning in near-Earth space. To control space debris, use is made of active and passive methods of space debris removal from operational orbits. At present, promising means of space debris removal are a space debris transfer to low-Earth orbits with a lifetime of less than twenty-five years, a transfer to a junk obit, and in-orbit utilization. According to the latest recommendations, space debris objects moved to low-Earth orbits should have a lifetime of less than twenty-five years. In the dense atmosphere, small space debris objects usually burn up completely, while large ones burn up only partially and may reach the Earth. Since space debris motion in the atmosphere can only be predicted with large errors, a timely and accurate prediction of the place and time of fall of large space debris objects onto the Earth is impossible. Space debris objects can remain in junk orbits for hundreds of years without interfering with space projects. This method of space debris removal reduces the risk of collision with space debris objects in the initial orbit, but increases it in the junk one. According to the concept of in-orbit utilization, space debris is considered a resource for the in-orbit industry. An active space debris removal involves high energy expenditures of service spacecraft. In this regard, the task of their estimation becomes important. The goal of this paper is a comparative assessment of the energy expenditures for moving space debris objects into utilization orbits using service spacecraft with electrojet propulsion systems. The problem is solved using methods of flight dynamics, averaging, and mathematical simulation. The novelty of the obtained results lies in the development of a ballistic scheme and a fast procedure to calculate energy expenditures for moving space debris objects to a disposal orbit using service spacecraft with constant low-thrust electrojet propulsion system. The procedure may be used in substantiating and planning space debris transfer from low-eccentricity low-Earth orbits to utilization orbits.","PeriodicalId":287730,"journal":{"name":"Technical mechanics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy expenditures for moving space debris objects from low-Earth orbits to utilization orbits\",\"authors\":\"Yu.M. Holdshtein\",\"doi\":\"10.15407/itm2023.02.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-increasing clogging of near-Earth space by space debris objects of various sizes significantly limits the possibilities of space activities and poses a great danger to the Earth’s objects. This is especially true for low orbits with altitudes up to 2,000 km. The risk of collision of operating spacecraft with space debris threatens their functioning in near-Earth space. To control space debris, use is made of active and passive methods of space debris removal from operational orbits. At present, promising means of space debris removal are a space debris transfer to low-Earth orbits with a lifetime of less than twenty-five years, a transfer to a junk obit, and in-orbit utilization. According to the latest recommendations, space debris objects moved to low-Earth orbits should have a lifetime of less than twenty-five years. In the dense atmosphere, small space debris objects usually burn up completely, while large ones burn up only partially and may reach the Earth. Since space debris motion in the atmosphere can only be predicted with large errors, a timely and accurate prediction of the place and time of fall of large space debris objects onto the Earth is impossible. Space debris objects can remain in junk orbits for hundreds of years without interfering with space projects. This method of space debris removal reduces the risk of collision with space debris objects in the initial orbit, but increases it in the junk one. According to the concept of in-orbit utilization, space debris is considered a resource for the in-orbit industry. An active space debris removal involves high energy expenditures of service spacecraft. In this regard, the task of their estimation becomes important. The goal of this paper is a comparative assessment of the energy expenditures for moving space debris objects into utilization orbits using service spacecraft with electrojet propulsion systems. The problem is solved using methods of flight dynamics, averaging, and mathematical simulation. The novelty of the obtained results lies in the development of a ballistic scheme and a fast procedure to calculate energy expenditures for moving space debris objects to a disposal orbit using service spacecraft with constant low-thrust electrojet propulsion system. The procedure may be used in substantiating and planning space debris transfer from low-eccentricity low-Earth orbits to utilization orbits.\",\"PeriodicalId\":287730,\"journal\":{\"name\":\"Technical mechanics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/itm2023.02.041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/itm2023.02.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种大小的空间碎片日益堵塞近地空间,极大地限制了空间活动的可能性,并对地球物体构成极大的危险。对于高度高达2000公里的低轨道来说尤其如此。运行中的航天器与空间碎片碰撞的危险威胁到其在近地空间的功能。为控制空间碎片,采用了从运行轨道上清除空间碎片的主动和被动方法。目前,有希望清除空间碎片的方法是将空间碎片转移到寿命小于25年的近地轨道、转移到垃圾轨道和在轨利用。根据最新的建议,移动到近地轨道的空间碎片物体的寿命应该少于25年。在稠密的大气层中,小的空间碎片通常会完全燃烧,而大的空间碎片只会部分燃烧,并可能到达地球。由于空间碎片在大气中的运动只能以较大误差进行预测,因此不可能及时准确地预测大型空间碎片物体落向地球的地点和时间。太空碎片物体可以在垃圾轨道上停留数百年而不会干扰太空项目。这种清除空间碎片的方法降低了在初始轨道上与空间碎片物体碰撞的风险,但增加了在垃圾轨道上发生碰撞的风险。根据在轨利用的概念,空间碎片被认为是在轨工业的一种资源。主动清除空间碎片对现役航天器的能量消耗较大。在这方面,评估它们的任务变得很重要。本文的目的是比较评估使用具有电喷推进系统的服务航天器将空间碎片物体移动到利用轨道的能量消耗。利用飞行动力学、平均和数学模拟等方法解决了该问题。所得结果的新颖之处在于开发了一种弹道方案和一种快速计算方法,用于使用具有恒定低推力电喷射推进系统的服役航天器将空间碎片物体移动到处置轨道。该程序可用于确定和规划空间碎片从低偏心低地球轨道转移到利用轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy expenditures for moving space debris objects from low-Earth orbits to utilization orbits
The ever-increasing clogging of near-Earth space by space debris objects of various sizes significantly limits the possibilities of space activities and poses a great danger to the Earth’s objects. This is especially true for low orbits with altitudes up to 2,000 km. The risk of collision of operating spacecraft with space debris threatens their functioning in near-Earth space. To control space debris, use is made of active and passive methods of space debris removal from operational orbits. At present, promising means of space debris removal are a space debris transfer to low-Earth orbits with a lifetime of less than twenty-five years, a transfer to a junk obit, and in-orbit utilization. According to the latest recommendations, space debris objects moved to low-Earth orbits should have a lifetime of less than twenty-five years. In the dense atmosphere, small space debris objects usually burn up completely, while large ones burn up only partially and may reach the Earth. Since space debris motion in the atmosphere can only be predicted with large errors, a timely and accurate prediction of the place and time of fall of large space debris objects onto the Earth is impossible. Space debris objects can remain in junk orbits for hundreds of years without interfering with space projects. This method of space debris removal reduces the risk of collision with space debris objects in the initial orbit, but increases it in the junk one. According to the concept of in-orbit utilization, space debris is considered a resource for the in-orbit industry. An active space debris removal involves high energy expenditures of service spacecraft. In this regard, the task of their estimation becomes important. The goal of this paper is a comparative assessment of the energy expenditures for moving space debris objects into utilization orbits using service spacecraft with electrojet propulsion systems. The problem is solved using methods of flight dynamics, averaging, and mathematical simulation. The novelty of the obtained results lies in the development of a ballistic scheme and a fast procedure to calculate energy expenditures for moving space debris objects to a disposal orbit using service spacecraft with constant low-thrust electrojet propulsion system. The procedure may be used in substantiating and planning space debris transfer from low-eccentricity low-Earth orbits to utilization orbits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining the coefficients of a hydrodynamic model of cavitating pumps of liquid-propellant rocket engines from their theoretical transfer matrices Methodological features of in-group evaluation of experts’ competence in determining the efficiency of space-rocket complexes Finite-element model of a vertical tank on a rigid foundation Mathematical model for selecting the auxiliary equipment parameters of aerodynamic deorbit systems Deployment of a space tether in a centrifugal force field with alignment to the local vertical
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1