一种新型内置自检图发生器,低功耗,高故障覆盖率

C. Reddy, V. Sumalatha
{"title":"一种新型内置自检图发生器,低功耗,高故障覆盖率","authors":"C. Reddy, V. Sumalatha","doi":"10.1109/RAICS.2013.6745440","DOIUrl":null,"url":null,"abstract":"The Built in Self Test (BIST) scheme proposed here is a combination of two test pattern generators. One is Low Transition Random Test Pattern Generator (LT-RTPG) and the other is Arithmetic based 3-weighted Random Test pattern Generator (A-3WRTPG). The LT-RTPG aims at detection of easy to detect faults which are prone to pseudo random patterns and reduction of power consumption during BIST activity. The LT-RTPG uses Bit-Swapping Linear Feedback Shift Register (BS-LFSR) for generation of pseudo random sequences. The BS-LFSR focuses on reducing the transitions in generated test pattern and there by reduces the power consumption during BIST activity. The A-3WRTPG aims at detection of pattern resistant faults that are left undetected by LT-RTPG and thereby increases the detection of fault probability. The A-3WRTPG uses flip flops and adders for carrying out arithmetic operations and modified form of weighted algorithm to achieve complete fault coverage. The weighted sets computed by A-3WRTPG comprising three weights, namely 0, 1, and 0.5 have been successfully utilized so far for test pattern generation, as a result in both low testing time and low consumed power. The proposed BIST can significantly reduce switching activity during BIST while achieving 100% fault coverage for all ISCAS'89 benchmark circuits.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A new built in self test pattern generator for low power dissipation and high fault coverage\",\"authors\":\"C. Reddy, V. Sumalatha\",\"doi\":\"10.1109/RAICS.2013.6745440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Built in Self Test (BIST) scheme proposed here is a combination of two test pattern generators. One is Low Transition Random Test Pattern Generator (LT-RTPG) and the other is Arithmetic based 3-weighted Random Test pattern Generator (A-3WRTPG). The LT-RTPG aims at detection of easy to detect faults which are prone to pseudo random patterns and reduction of power consumption during BIST activity. The LT-RTPG uses Bit-Swapping Linear Feedback Shift Register (BS-LFSR) for generation of pseudo random sequences. The BS-LFSR focuses on reducing the transitions in generated test pattern and there by reduces the power consumption during BIST activity. The A-3WRTPG aims at detection of pattern resistant faults that are left undetected by LT-RTPG and thereby increases the detection of fault probability. The A-3WRTPG uses flip flops and adders for carrying out arithmetic operations and modified form of weighted algorithm to achieve complete fault coverage. The weighted sets computed by A-3WRTPG comprising three weights, namely 0, 1, and 0.5 have been successfully utilized so far for test pattern generation, as a result in both low testing time and low consumed power. The proposed BIST can significantly reduce switching activity during BIST while achieving 100% fault coverage for all ISCAS'89 benchmark circuits.\",\"PeriodicalId\":184155,\"journal\":{\"name\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2013.6745440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出的内建自检(BIST)方案是两个测试模式生成器的组合。一种是低转移随机测试图发生器(LT-RTPG),另一种是基于算法的3加权随机测试图发生器(A-3WRTPG)。LT-RTPG旨在检测易检测的伪随机模式故障,并降低BIST活动期间的功耗。LT-RTPG使用比特交换线性反馈移位寄存器(BS-LFSR)生成伪随机序列。BS-LFSR侧重于减少生成测试模式中的转换,从而降低BIST活动期间的功耗。A-3WRTPG旨在检测LT-RTPG未检测到的模式抗性故障,从而提高故障的检测概率。A-3WRTPG采用触发器和加法器进行算术运算,并采用改进形式的加权算法实现完全故障覆盖。目前,a - 3wrtpg计算的由0、1、0.5三个权重组成的加权集已成功用于测试模式生成,测试时间短,功耗低。所提出的BIST可以显著减少BIST期间的开关活动,同时实现所有ISCAS'89基准电路100%的故障覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new built in self test pattern generator for low power dissipation and high fault coverage
The Built in Self Test (BIST) scheme proposed here is a combination of two test pattern generators. One is Low Transition Random Test Pattern Generator (LT-RTPG) and the other is Arithmetic based 3-weighted Random Test pattern Generator (A-3WRTPG). The LT-RTPG aims at detection of easy to detect faults which are prone to pseudo random patterns and reduction of power consumption during BIST activity. The LT-RTPG uses Bit-Swapping Linear Feedback Shift Register (BS-LFSR) for generation of pseudo random sequences. The BS-LFSR focuses on reducing the transitions in generated test pattern and there by reduces the power consumption during BIST activity. The A-3WRTPG aims at detection of pattern resistant faults that are left undetected by LT-RTPG and thereby increases the detection of fault probability. The A-3WRTPG uses flip flops and adders for carrying out arithmetic operations and modified form of weighted algorithm to achieve complete fault coverage. The weighted sets computed by A-3WRTPG comprising three weights, namely 0, 1, and 0.5 have been successfully utilized so far for test pattern generation, as a result in both low testing time and low consumed power. The proposed BIST can significantly reduce switching activity during BIST while achieving 100% fault coverage for all ISCAS'89 benchmark circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic gesture recognition of Indian sign language considering local motion of hand using spatial location of Key Maximum Curvature Points OFDM radio based range and direction sensor for robotics applications A new built in self test pattern generator for low power dissipation and high fault coverage Reconfigurable ultrasonic beamformer Clustering of web sessions by FOGSAA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1