图像搜索中基于中级特征的局部描述符选择

S. Bucak, A. Saxena, Abhishek Nagar, Felix C. A. Fernandes, Kong-Posh Bhat
{"title":"图像搜索中基于中级特征的局部描述符选择","authors":"S. Bucak, A. Saxena, Abhishek Nagar, Felix C. A. Fernandes, Kong-Posh Bhat","doi":"10.1109/VCIP.2013.6706455","DOIUrl":null,"url":null,"abstract":"The objective in developing compact descriptors for visual image search is building an image retrieval system that works efficiently and effectively under bandwidth and memory constraints. Selecting local descriptors to be processed, and sending them to the server for matching is an integral part of such a system. One such image search and retrieval system is the Compact Descriptors for Visual Search (CDVS) standardization test model being developed by MPEG which has an efficient local descriptor selection criteria. However, all the existing selection parameters in CDVS are based on low-level features. In this paper, we propose two “mid-level” local descriptor selection criteria: Visual Meaning Score (VMS), and Visual Vocabulary Score (VVS) which can be seamlessly integrated into the existing CDVS framework. A mid-level criteria explicitly allows selection of local descriptors closer to a given set of images. Both VMS and VVS are based on visual words (patches) of images, and provide significant gains over the current CDVS standard in terms of matching accuracy, and have very low implementation cost.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mid-level feature based local descriptor selection for image search\",\"authors\":\"S. Bucak, A. Saxena, Abhishek Nagar, Felix C. A. Fernandes, Kong-Posh Bhat\",\"doi\":\"10.1109/VCIP.2013.6706455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective in developing compact descriptors for visual image search is building an image retrieval system that works efficiently and effectively under bandwidth and memory constraints. Selecting local descriptors to be processed, and sending them to the server for matching is an integral part of such a system. One such image search and retrieval system is the Compact Descriptors for Visual Search (CDVS) standardization test model being developed by MPEG which has an efficient local descriptor selection criteria. However, all the existing selection parameters in CDVS are based on low-level features. In this paper, we propose two “mid-level” local descriptor selection criteria: Visual Meaning Score (VMS), and Visual Vocabulary Score (VVS) which can be seamlessly integrated into the existing CDVS framework. A mid-level criteria explicitly allows selection of local descriptors closer to a given set of images. Both VMS and VVS are based on visual words (patches) of images, and provide significant gains over the current CDVS standard in terms of matching accuracy, and have very low implementation cost.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

开发用于视觉图像搜索的紧凑描述符的目标是建立一个在带宽和内存限制下高效工作的图像检索系统。选择要处理的局部描述符,并将它们发送到服务器进行匹配,是这样一个系统的组成部分。其中一个图像搜索和检索系统是由MPEG开发的压缩视觉搜索描述符(CDVS)标准化测试模型,该模型具有高效的局部描述符选择标准。然而,现有的cddvs选择参数都是基于底层特征的。在本文中,我们提出了两个“中级”局部描述符选择标准:视觉意义评分(VMS)和视觉词汇评分(VVS),这两个标准可以无缝集成到现有的cddvs框架中。中级标准明确地允许选择更接近给定图像集的局部描述符。VMS和VVS都是基于图像的视觉词(补丁),在匹配精度方面比目前的CDVS标准有显著提高,并且实现成本非常低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mid-level feature based local descriptor selection for image search
The objective in developing compact descriptors for visual image search is building an image retrieval system that works efficiently and effectively under bandwidth and memory constraints. Selecting local descriptors to be processed, and sending them to the server for matching is an integral part of such a system. One such image search and retrieval system is the Compact Descriptors for Visual Search (CDVS) standardization test model being developed by MPEG which has an efficient local descriptor selection criteria. However, all the existing selection parameters in CDVS are based on low-level features. In this paper, we propose two “mid-level” local descriptor selection criteria: Visual Meaning Score (VMS), and Visual Vocabulary Score (VVS) which can be seamlessly integrated into the existing CDVS framework. A mid-level criteria explicitly allows selection of local descriptors closer to a given set of images. Both VMS and VVS are based on visual words (patches) of images, and provide significant gains over the current CDVS standard in terms of matching accuracy, and have very low implementation cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New motherwavelet for pattern detection in IR image Improved disparity vector derivation in 3D-HEVC Learning non-negative locality-constrained Linear Coding for human action recognition Wavelet based smoke detection method with RGB Contrast-image and shape constrain Joint image denoising using self-similarity based low-rank approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1