支持比较的保护隐私的映射方案

Qiang Tang
{"title":"支持比较的保护隐私的映射方案","authors":"Qiang Tang","doi":"10.1145/1866835.1866846","DOIUrl":null,"url":null,"abstract":"To cater to the privacy requirements in cloud computing, we introduce a new primitive, namely Privacy Preserving Mapping (PPM) schemes supporting comparison. An PPM scheme enables a user to map data items into images in such a way that, with a set of images, any entity can determine the <, =, > relationships among the corresponding data items. We propose three privacy notions, namely ideal privacy, level-1 privacy, and level-2 privacy, and three constructions satisfying these privacy notions respectively.","PeriodicalId":300613,"journal":{"name":"Cloud Computing Security Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Privacy preserving mapping schemes supporting comparison\",\"authors\":\"Qiang Tang\",\"doi\":\"10.1145/1866835.1866846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To cater to the privacy requirements in cloud computing, we introduce a new primitive, namely Privacy Preserving Mapping (PPM) schemes supporting comparison. An PPM scheme enables a user to map data items into images in such a way that, with a set of images, any entity can determine the <, =, > relationships among the corresponding data items. We propose three privacy notions, namely ideal privacy, level-1 privacy, and level-2 privacy, and three constructions satisfying these privacy notions respectively.\",\"PeriodicalId\":300613,\"journal\":{\"name\":\"Cloud Computing Security Workshop\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cloud Computing Security Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1866835.1866846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cloud Computing Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1866835.1866846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

为了满足云计算中的隐私需求,我们引入了一种新的原语,即支持比较的隐私保持映射(PPM)方案。PPM方案使用户能够以这样一种方式将数据项映射到图像中,即使用一组图像,任何实体都可以确定相应数据项之间的关系。我们提出了理想隐私、一级隐私和二级隐私三种隐私概念,并分别提出了满足这些隐私概念的三种结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy preserving mapping schemes supporting comparison
To cater to the privacy requirements in cloud computing, we introduce a new primitive, namely Privacy Preserving Mapping (PPM) schemes supporting comparison. An PPM scheme enables a user to map data items into images in such a way that, with a set of images, any entity can determine the <, =, > relationships among the corresponding data items. We propose three privacy notions, namely ideal privacy, level-1 privacy, and level-2 privacy, and three constructions satisfying these privacy notions respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Side Channels in Multi-Tenant Environments How Private is Your Private Cloud?: Security Analysis of Cloud Control Interfaces Return of the Covert Channel, Data Center Style Fast Order-Preserving Encryption from Uniform Distribution Sampling Cloud Security: The Industry Landscape and the Lure of Zero-Knowledge Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1