{"title":"检测火灾和爆炸传感器故障","authors":"H. Chafouk, L. Gliga","doi":"10.1109/CIVEMSA.2017.7995294","DOIUrl":null,"url":null,"abstract":"A real time fire and explosion detection system is presented in this paper, using data acquired from a Wireless Sensor Network inside a room. First it is filtered to remove the noise. Then, the stochastic process is modelled in real time. The model is also used to predict the future temperature. The outputs of the model are used to detect sensor faults, this way assuring the reliability of the data. Fires are detected using a change detection method three being proposed in this paper, but just one being recommended. Finally, explosions are identified using the predicted data.","PeriodicalId":123360,"journal":{"name":"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of faulty sensors of fire and explosions\",\"authors\":\"H. Chafouk, L. Gliga\",\"doi\":\"10.1109/CIVEMSA.2017.7995294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real time fire and explosion detection system is presented in this paper, using data acquired from a Wireless Sensor Network inside a room. First it is filtered to remove the noise. Then, the stochastic process is modelled in real time. The model is also used to predict the future temperature. The outputs of the model are used to detect sensor faults, this way assuring the reliability of the data. Fires are detected using a change detection method three being proposed in this paper, but just one being recommended. Finally, explosions are identified using the predicted data.\",\"PeriodicalId\":123360,\"journal\":{\"name\":\"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2017.7995294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2017.7995294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用室内无线传感器网络采集数据的火灾爆炸实时检测系统。首先对其进行过滤以去除噪声。然后,对随机过程进行实时建模。该模型还用于预测未来的温度。该模型的输出用于检测传感器故障,从而保证了数据的可靠性。使用变更检测方法检测火灾,本文提出了三种变更检测方法,但只推荐一种。最后,利用预测数据识别爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of faulty sensors of fire and explosions
A real time fire and explosion detection system is presented in this paper, using data acquired from a Wireless Sensor Network inside a room. First it is filtered to remove the noise. Then, the stochastic process is modelled in real time. The model is also used to predict the future temperature. The outputs of the model are used to detect sensor faults, this way assuring the reliability of the data. Fires are detected using a change detection method three being proposed in this paper, but just one being recommended. Finally, explosions are identified using the predicted data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timber Health Monitoring using piezoelectric sensor and machine learning Detection of faulty sensors of fire and explosions A trusted lightweight synchronisation protocol for wireless ad-hoc networks A one-class Clustering technique for Novelty Detection and Isolation in sensor networks Towards autonomous maritime operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1