基于云模型的偏好排序分布多目标估计算法

Ying Gao, Waixi Liu
{"title":"基于云模型的偏好排序分布多目标估计算法","authors":"Ying Gao, Waixi Liu","doi":"10.1109/INCoS.2013.71","DOIUrl":null,"url":null,"abstract":"Estimation of distribution algorithms(EDAs) are a class of evolutionary optimization algorithms. In this paper, EDAs scheme are extended to multi-objective optimization problems by using preference order and cloud model. In the algorithm, three digital characteristics from the current population are firstly estimated by backward cloud generator. Afterwards, forward cloud generator used to generate current offsprings population according to three digital characteristics. The population with the current population and current offsprings population is sorted based on preference order, and the best individuals are selected to form the next population. The proposed algorithm is tested to compare with some other algorithms using a set of benchmark functions. The experimental results show that the algorithm is effective on the benchmark functions.","PeriodicalId":353706,"journal":{"name":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cloud Model-Based Multi-objective Estimation of Distribution Algorithm with Preference Order Ranking\",\"authors\":\"Ying Gao, Waixi Liu\",\"doi\":\"10.1109/INCoS.2013.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of distribution algorithms(EDAs) are a class of evolutionary optimization algorithms. In this paper, EDAs scheme are extended to multi-objective optimization problems by using preference order and cloud model. In the algorithm, three digital characteristics from the current population are firstly estimated by backward cloud generator. Afterwards, forward cloud generator used to generate current offsprings population according to three digital characteristics. The population with the current population and current offsprings population is sorted based on preference order, and the best individuals are selected to form the next population. The proposed algorithm is tested to compare with some other algorithms using a set of benchmark functions. The experimental results show that the algorithm is effective on the benchmark functions.\",\"PeriodicalId\":353706,\"journal\":{\"name\":\"2013 5th International Conference on Intelligent Networking and Collaborative Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Intelligent Networking and Collaborative Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCoS.2013.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2013.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分布估计算法(EDAs)是一类进化优化算法。本文利用偏好顺序和云模型,将EDAs方案扩展到多目标优化问题。该算法首先利用后向云发生器估计当前种群的三个数字特征。然后利用正向云发生器根据三个数字特征生成当前子代种群。根据偏好顺序对当前种群和当前后代种群组成的种群进行排序,选择最优个体组成下一个种群。利用一组基准函数对该算法进行了测试,并与其他算法进行了比较。实验结果表明,该算法在基准函数上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud Model-Based Multi-objective Estimation of Distribution Algorithm with Preference Order Ranking
Estimation of distribution algorithms(EDAs) are a class of evolutionary optimization algorithms. In this paper, EDAs scheme are extended to multi-objective optimization problems by using preference order and cloud model. In the algorithm, three digital characteristics from the current population are firstly estimated by backward cloud generator. Afterwards, forward cloud generator used to generate current offsprings population according to three digital characteristics. The population with the current population and current offsprings population is sorted based on preference order, and the best individuals are selected to form the next population. The proposed algorithm is tested to compare with some other algorithms using a set of benchmark functions. The experimental results show that the algorithm is effective on the benchmark functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Efficient Priority-and-Activity-Based QoS MAC Protocol Impact of Channel Estimation Error on Time Division Broadcast Protocol in Bidirectional Relaying Systems RLWE-Based Homomorphic Encryption and Private Information Retrieval A Spatially Varying Mean and Variance Active Contour Model A Secure Cloud Storage System from Threshold Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1