{"title":"无人驾驶飞行器的目视引导着陆","authors":"S. Saripalli, J. Montgomery, G. Sukhatme","doi":"10.1109/TRA.2003.810239","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a real-time, vision-based landing algorithm for an autonomous helicopter. The landing algorithm is integrated with algorithms for visual acquisition of the target (a helipad) and navigation to the target, from an arbitrary initial position and orientation. We use vision for precise target detection and recognition, and a combination of vision and Global Positioning System for navigation. The helicopter updates its landing target parameters based on vision and uses an onboard behavior-based controller to follow a path to the landing site. We present significant results from flight trials in the field which demonstrate that our detection, recognition, and control algorithms are accurate, robust, and repeatable.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"517","resultStr":"{\"title\":\"Visually guided landing of an unmanned aerial vehicle\",\"authors\":\"S. Saripalli, J. Montgomery, G. Sukhatme\",\"doi\":\"10.1109/TRA.2003.810239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design and implementation of a real-time, vision-based landing algorithm for an autonomous helicopter. The landing algorithm is integrated with algorithms for visual acquisition of the target (a helipad) and navigation to the target, from an arbitrary initial position and orientation. We use vision for precise target detection and recognition, and a combination of vision and Global Positioning System for navigation. The helicopter updates its landing target parameters based on vision and uses an onboard behavior-based controller to follow a path to the landing site. We present significant results from flight trials in the field which demonstrate that our detection, recognition, and control algorithms are accurate, robust, and repeatable.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"517\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.810239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.810239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visually guided landing of an unmanned aerial vehicle
We present the design and implementation of a real-time, vision-based landing algorithm for an autonomous helicopter. The landing algorithm is integrated with algorithms for visual acquisition of the target (a helipad) and navigation to the target, from an arbitrary initial position and orientation. We use vision for precise target detection and recognition, and a combination of vision and Global Positioning System for navigation. The helicopter updates its landing target parameters based on vision and uses an onboard behavior-based controller to follow a path to the landing site. We present significant results from flight trials in the field which demonstrate that our detection, recognition, and control algorithms are accurate, robust, and repeatable.