深度卷积神经网络在汽车图像分类中的比较研究

Phuriwat Rasameekunwit, Wutthichai Puangmanee
{"title":"深度卷积神经网络在汽车图像分类中的比较研究","authors":"Phuriwat Rasameekunwit, Wutthichai Puangmanee","doi":"10.1109/RI2C56397.2022.9910270","DOIUrl":null,"url":null,"abstract":"This paper aims to present the result of a comparative study of Deep Convolutional Neural Networks (CNN) using the AlexNet architecture to use the car image classification of a small dataset. We have proposed the experiment result from a comparative study dropout value using Cuckoo Search (CS), of the optimization techniques for a small data set solving problem of overfitting. The car images for the experiment are different in color, size, and position. As a result, the training time average of $\\sim 59.16$ minutes, and the model accuracy of 91.41%.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification\",\"authors\":\"Phuriwat Rasameekunwit, Wutthichai Puangmanee\",\"doi\":\"10.1109/RI2C56397.2022.9910270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present the result of a comparative study of Deep Convolutional Neural Networks (CNN) using the AlexNet architecture to use the car image classification of a small dataset. We have proposed the experiment result from a comparative study dropout value using Cuckoo Search (CS), of the optimization techniques for a small data set solving problem of overfitting. The car images for the experiment are different in color, size, and position. As a result, the training time average of $\\\\sim 59.16$ minutes, and the model accuracy of 91.41%.\",\"PeriodicalId\":403083,\"journal\":{\"name\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RI2C56397.2022.9910270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在介绍使用AlexNet架构的深度卷积神经网络(CNN)使用小数据集的汽车图像分类的比较研究结果。我们利用布谷鸟搜索(Cuckoo Search, CS)对小数据集的过拟合问题的优化技术进行了dropout值的比较研究,并提出了实验结果。实验中的汽车图像在颜色、大小和位置上都是不同的。结果,训练时间平均为59.16美元分钟,模型准确率为91.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification
This paper aims to present the result of a comparative study of Deep Convolutional Neural Networks (CNN) using the AlexNet architecture to use the car image classification of a small dataset. We have proposed the experiment result from a comparative study dropout value using Cuckoo Search (CS), of the optimization techniques for a small data set solving problem of overfitting. The car images for the experiment are different in color, size, and position. As a result, the training time average of $\sim 59.16$ minutes, and the model accuracy of 91.41%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperparameter Tuning in Convolutional Neural Network for Face Touching Activity Recognition using Accelerometer Data RI2C 2022 Cover Page CNN based Automatic Detection of Defective Photovoltaic Modules using Aerial Imagery Metaverse for Developing Engineering Competency A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1