J. A. Paredes, Carlos Saito, Monica Abarca, F. Cuéllar
{"title":"高空环境对多旋翼和固定翼无人机能耗和飞行时间的影响研究","authors":"J. A. Paredes, Carlos Saito, Monica Abarca, F. Cuéllar","doi":"10.1109/COASE.2017.8256340","DOIUrl":null,"url":null,"abstract":"The effects of low air density (characteristic at high-altitude environments) on small-sized Unmanned Aerial Vehicles (UAVs) are studied in this paper. Flight data from a fixed-wing aircraft and a quadcopter (in representation of multicopters) is examined to substantiate the influence high altitude conditions have on small UAVs' flight. By using aeronautical theoretical background to construct a hypothesis concerning how altitude affects the energy consumption and, consequently, flight time of both types of UAV, a qualitative analysis of flight missions held at different altitudes will be performed to find a correlation between the energy consumption and target altitude to determine if low altitude flight missions could be used to predict consumption at high-altitude environments. Finally, guidelines abstracted from these flight experiences will be given to help in the future design of UAVs with high altitude applications.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Study of effects of high-altitude environments on multicopter and fixed-wing UAVs' energy consumption and flight time\",\"authors\":\"J. A. Paredes, Carlos Saito, Monica Abarca, F. Cuéllar\",\"doi\":\"10.1109/COASE.2017.8256340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of low air density (characteristic at high-altitude environments) on small-sized Unmanned Aerial Vehicles (UAVs) are studied in this paper. Flight data from a fixed-wing aircraft and a quadcopter (in representation of multicopters) is examined to substantiate the influence high altitude conditions have on small UAVs' flight. By using aeronautical theoretical background to construct a hypothesis concerning how altitude affects the energy consumption and, consequently, flight time of both types of UAV, a qualitative analysis of flight missions held at different altitudes will be performed to find a correlation between the energy consumption and target altitude to determine if low altitude flight missions could be used to predict consumption at high-altitude environments. Finally, guidelines abstracted from these flight experiences will be given to help in the future design of UAVs with high altitude applications.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of effects of high-altitude environments on multicopter and fixed-wing UAVs' energy consumption and flight time
The effects of low air density (characteristic at high-altitude environments) on small-sized Unmanned Aerial Vehicles (UAVs) are studied in this paper. Flight data from a fixed-wing aircraft and a quadcopter (in representation of multicopters) is examined to substantiate the influence high altitude conditions have on small UAVs' flight. By using aeronautical theoretical background to construct a hypothesis concerning how altitude affects the energy consumption and, consequently, flight time of both types of UAV, a qualitative analysis of flight missions held at different altitudes will be performed to find a correlation between the energy consumption and target altitude to determine if low altitude flight missions could be used to predict consumption at high-altitude environments. Finally, guidelines abstracted from these flight experiences will be given to help in the future design of UAVs with high altitude applications.