IEEE 1588应用于高可用性局域网环境

Sven Meier, Hans Weibel
{"title":"IEEE 1588应用于高可用性局域网环境","authors":"Sven Meier, Hans Weibel","doi":"10.1109/ISPCS.2007.4383781","DOIUrl":null,"url":null,"abstract":"High availability applications typically count on the network's ability to reconfigure in case of a failure. Since the precision time protocol (PTP) measures the delay of communication paths, it has to cope with network topology changes. The concept of peer-to-peer transparent clocks (TC), introduced with PTP version 2, facilitates the handling of path switchover by measuring the link delays from each node to its neighbors in advance. The parallel redundancy protocol (PRP) follows a different approach from the well-known reconfiguration protocols. It makes use of two independent Ethernet networks. Frames are replicated by the sending node and transmitted over both networks. Duplicates are discarded by the receiving node. There is no distinction between a working and a backup path. The combination of PTP and PRP is studied in this paper. Different models are presented and evaluated with respect to synchronization switchover and implementation issues. An experimental implementation is outlined. The results show that master clock failure as well as network failures can be handled with very low impact on synchronization quality.","PeriodicalId":258197,"journal":{"name":"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"IEEE 1588 applied in the environment of high availability LANs\",\"authors\":\"Sven Meier, Hans Weibel\",\"doi\":\"10.1109/ISPCS.2007.4383781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High availability applications typically count on the network's ability to reconfigure in case of a failure. Since the precision time protocol (PTP) measures the delay of communication paths, it has to cope with network topology changes. The concept of peer-to-peer transparent clocks (TC), introduced with PTP version 2, facilitates the handling of path switchover by measuring the link delays from each node to its neighbors in advance. The parallel redundancy protocol (PRP) follows a different approach from the well-known reconfiguration protocols. It makes use of two independent Ethernet networks. Frames are replicated by the sending node and transmitted over both networks. Duplicates are discarded by the receiving node. There is no distinction between a working and a backup path. The combination of PTP and PRP is studied in this paper. Different models are presented and evaluated with respect to synchronization switchover and implementation issues. An experimental implementation is outlined. The results show that master clock failure as well as network failures can be handled with very low impact on synchronization quality.\",\"PeriodicalId\":258197,\"journal\":{\"name\":\"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCS.2007.4383781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCS.2007.4383781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

高可用性应用程序通常依赖于网络在出现故障时重新配置的能力。由于精确时间协议(PTP)测量通信路径的延迟,它必须应对网络拓扑的变化。PTP版本2引入了点对点透明时钟(TC)的概念,通过提前测量从每个节点到其邻居的链路延迟,简化了路径切换的处理。并行冗余协议(PRP)采用了一种不同于众所周知的重构协议的方法。它利用两个独立的以太网络。帧由发送节点复制并在两个网络上传输。接收节点将丢弃重复的副本。工作路径和备份路径没有区别。本文对PTP和PRP的结合进行了研究。针对同步切换和实现问题,提出并评估了不同的模型。给出了一个实验实现。结果表明,主时钟故障和网络故障可以在对同步质量影响很小的情况下处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IEEE 1588 applied in the environment of high availability LANs
High availability applications typically count on the network's ability to reconfigure in case of a failure. Since the precision time protocol (PTP) measures the delay of communication paths, it has to cope with network topology changes. The concept of peer-to-peer transparent clocks (TC), introduced with PTP version 2, facilitates the handling of path switchover by measuring the link delays from each node to its neighbors in advance. The parallel redundancy protocol (PRP) follows a different approach from the well-known reconfiguration protocols. It makes use of two independent Ethernet networks. Frames are replicated by the sending node and transmitted over both networks. Duplicates are discarded by the receiving node. There is no distinction between a working and a backup path. The combination of PTP and PRP is studied in this paper. Different models are presented and evaluated with respect to synchronization switchover and implementation issues. An experimental implementation is outlined. The results show that master clock failure as well as network failures can be handled with very low impact on synchronization quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object-oriented Model for IEEE 1588 Standard IEEE 1588 applied in the environment of high availability LANs Clock Synchronization for Wireless Positioning of COTS Mobile Nodes Precise Time Synchronization in Semiconductor Manufacturing Modeling and Simulation Analysis of PTP Clock Servo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1