柔性导弹数学模型与控制系统设计

A. Panferov, A. Nebylov, S. Brodsky
{"title":"柔性导弹数学模型与控制系统设计","authors":"A. Panferov, A. Nebylov, S. Brodsky","doi":"10.1109/RAST.2009.5158263","DOIUrl":null,"url":null,"abstract":"Possible approaches to the mathematical description of different types of flexible vehicles are observed. Mass and aerodynamic characteristics are changing considerably during the flight of aerospace vehicles. From the point of view of control theory such vehicles are the typical non-linear and non-steady plants. The aim of designer is to create the light construction. For these reason such objects are deformed in flight, and their elastic properties appear. Elastic longitudinal and lateral oscillations of the complex form arise, which frequencies are changing during the flight. Elastic oscillations are usually described by differential partial equations or ordinary differential equations of the great dimension. Deformation of a body results in appearance of the local attack angles and slide angles. As a result of it, the local forces and moments of forces arise. These forces and moments are synchronized with the changes of local angles of attack and slide. The local forces and moments are the reasons of amplification or attenuation of elastic oscillations. This phenomena is known as aeroflexibility. At excessive development of elastic oscillations the structural failure may take place. Paying attention to these effects has a great importance at control of space stations and space probes, airplanes and other mobile objects liable to the considerable dynamic loads.","PeriodicalId":412236,"journal":{"name":"2009 4th International Conference on Recent Advances in Space Technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mathematical models and control system designing for flexible missile\",\"authors\":\"A. Panferov, A. Nebylov, S. Brodsky\",\"doi\":\"10.1109/RAST.2009.5158263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Possible approaches to the mathematical description of different types of flexible vehicles are observed. Mass and aerodynamic characteristics are changing considerably during the flight of aerospace vehicles. From the point of view of control theory such vehicles are the typical non-linear and non-steady plants. The aim of designer is to create the light construction. For these reason such objects are deformed in flight, and their elastic properties appear. Elastic longitudinal and lateral oscillations of the complex form arise, which frequencies are changing during the flight. Elastic oscillations are usually described by differential partial equations or ordinary differential equations of the great dimension. Deformation of a body results in appearance of the local attack angles and slide angles. As a result of it, the local forces and moments of forces arise. These forces and moments are synchronized with the changes of local angles of attack and slide. The local forces and moments are the reasons of amplification or attenuation of elastic oscillations. This phenomena is known as aeroflexibility. At excessive development of elastic oscillations the structural failure may take place. Paying attention to these effects has a great importance at control of space stations and space probes, airplanes and other mobile objects liable to the considerable dynamic loads.\",\"PeriodicalId\":412236,\"journal\":{\"name\":\"2009 4th International Conference on Recent Advances in Space Technologies\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 4th International Conference on Recent Advances in Space Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAST.2009.5158263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Recent Advances in Space Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2009.5158263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

观察了不同类型柔性车辆的数学描述的可能方法。在航天飞行器的飞行过程中,质量和气动特性发生了很大的变化。从控制理论的角度看,这类车辆是典型的非线性非稳态对象。设计师的目标是创造轻盈的建筑。由于这些原因,这些物体在飞行中是变形的,它们的弹性特性出现了。复杂形式的弹性纵向和横向振荡产生,其频率在飞行过程中发生变化。弹性振动通常用微分偏微分方程或大维常微分方程来描述。物体的变形导致局部攻角和滑动角的出现。因此,局部力和力矩就产生了。这些力和力矩与局部攻角和滑动角的变化是同步的。局部力和力矩是引起弹性振动放大或衰减的原因。这种现象被称为空气柔韧性。当弹性振动过度发展时,结构可能发生破坏。研究这些效应对空间站和空间探测器、飞机和其他易受较大动载荷影响的移动物体的控制具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical models and control system designing for flexible missile
Possible approaches to the mathematical description of different types of flexible vehicles are observed. Mass and aerodynamic characteristics are changing considerably during the flight of aerospace vehicles. From the point of view of control theory such vehicles are the typical non-linear and non-steady plants. The aim of designer is to create the light construction. For these reason such objects are deformed in flight, and their elastic properties appear. Elastic longitudinal and lateral oscillations of the complex form arise, which frequencies are changing during the flight. Elastic oscillations are usually described by differential partial equations or ordinary differential equations of the great dimension. Deformation of a body results in appearance of the local attack angles and slide angles. As a result of it, the local forces and moments of forces arise. These forces and moments are synchronized with the changes of local angles of attack and slide. The local forces and moments are the reasons of amplification or attenuation of elastic oscillations. This phenomena is known as aeroflexibility. At excessive development of elastic oscillations the structural failure may take place. Paying attention to these effects has a great importance at control of space stations and space probes, airplanes and other mobile objects liable to the considerable dynamic loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The place of small satellites in fulfilling the Earth observation requirements of a developing country Biorobotics: Innovative and low cost technologies for next generation planetary rovers Study of oscillators frequency stability in satellite communication links Monitoring of the linear infrastructure: Environmental and social impacts Space agriculture for habitation on mars and sustainable civilization on earth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1