{"title":"利用深度网络估计背景光和场景深度的水下图像恢复","authors":"Keming Cao, Yan-Tsung Peng, P. Cosman","doi":"10.1109/SSIAI.2018.8470347","DOIUrl":null,"url":null,"abstract":"Images taken underwater often suffer color distortion and low contrast because of light scattering and absorption. An underwater image can be modeled as a blend of a clear image and a background light, with the relative amounts of each determined by the depth from the camera. In this paper, we propose two neural network structures to estimate background light and scene depth, to restore underwater images. Experimental results on synthetic and real underwater images demonstrate the effectiveness of the proposed method.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Underwater Image Restoration using Deep Networks to Estimate Background Light and Scene Depth\",\"authors\":\"Keming Cao, Yan-Tsung Peng, P. Cosman\",\"doi\":\"10.1109/SSIAI.2018.8470347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images taken underwater often suffer color distortion and low contrast because of light scattering and absorption. An underwater image can be modeled as a blend of a clear image and a background light, with the relative amounts of each determined by the depth from the camera. In this paper, we propose two neural network structures to estimate background light and scene depth, to restore underwater images. Experimental results on synthetic and real underwater images demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Underwater Image Restoration using Deep Networks to Estimate Background Light and Scene Depth
Images taken underwater often suffer color distortion and low contrast because of light scattering and absorption. An underwater image can be modeled as a blend of a clear image and a background light, with the relative amounts of each determined by the depth from the camera. In this paper, we propose two neural network structures to estimate background light and scene depth, to restore underwater images. Experimental results on synthetic and real underwater images demonstrate the effectiveness of the proposed method.