利用深度网络估计背景光和场景深度的水下图像恢复

Keming Cao, Yan-Tsung Peng, P. Cosman
{"title":"利用深度网络估计背景光和场景深度的水下图像恢复","authors":"Keming Cao, Yan-Tsung Peng, P. Cosman","doi":"10.1109/SSIAI.2018.8470347","DOIUrl":null,"url":null,"abstract":"Images taken underwater often suffer color distortion and low contrast because of light scattering and absorption. An underwater image can be modeled as a blend of a clear image and a background light, with the relative amounts of each determined by the depth from the camera. In this paper, we propose two neural network structures to estimate background light and scene depth, to restore underwater images. Experimental results on synthetic and real underwater images demonstrate the effectiveness of the proposed method.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Underwater Image Restoration using Deep Networks to Estimate Background Light and Scene Depth\",\"authors\":\"Keming Cao, Yan-Tsung Peng, P. Cosman\",\"doi\":\"10.1109/SSIAI.2018.8470347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images taken underwater often suffer color distortion and low contrast because of light scattering and absorption. An underwater image can be modeled as a blend of a clear image and a background light, with the relative amounts of each determined by the depth from the camera. In this paper, we propose two neural network structures to estimate background light and scene depth, to restore underwater images. Experimental results on synthetic and real underwater images demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

由于光的散射和吸收,在水下拍摄的图像往往会出现色彩失真和低对比度。水下图像可以建模为清晰图像和背景光的混合,两者的相对数量由距相机的深度决定。在本文中,我们提出了两种神经网络结构来估计背景光和场景深度,以恢复水下图像。在合成和真实水下图像上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Underwater Image Restoration using Deep Networks to Estimate Background Light and Scene Depth
Images taken underwater often suffer color distortion and low contrast because of light scattering and absorption. An underwater image can be modeled as a blend of a clear image and a background light, with the relative amounts of each determined by the depth from the camera. In this paper, we propose two neural network structures to estimate background light and scene depth, to restore underwater images. Experimental results on synthetic and real underwater images demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1