基于k -最近邻分类器的高压开关分类系统

Haien Wang, Jing Zhang, Yang Zhao, Jun Wang, Xiaorong Du
{"title":"基于k -最近邻分类器的高压开关分类系统","authors":"Haien Wang, Jing Zhang, Yang Zhao, Jun Wang, Xiaorong Du","doi":"10.1109/ICCC51575.2020.9344925","DOIUrl":null,"url":null,"abstract":"Classification of high-voltage electric switches is an important operation in industrial manufacturing. However, the electrical shock hazards make it dangerous to human. Therefore, classifying high-voltage electric switches automatically is of great interest for factories. For this purpose, we designed a system based on k-nearest neighbor algorithm and bag of visual words model, which performs well in classifying 3 states of highvoltage electric switches. We achieve the classifying task by 3 steps: extracting features of high-voltage electric switch pictures by using SIFT algorithm; clustering SIFT features of all training pictures as visual words and set up a bag of visual words model; calculating the visual words frequency of each picture and using them as inputs of k-nearest neighbor classifier. With the trained model, we extract SIFT features and count visual words frequency of a new picture to be classified, then predict its state by looking for the k nearest training pictures. An experimental study performed on a set of pictures reveals some good performance of this system, compared to other classification methods such as SVM and VGG-16.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Voltage Electric Switch Classification System Based on K-Nearest Neighbor Classifier\",\"authors\":\"Haien Wang, Jing Zhang, Yang Zhao, Jun Wang, Xiaorong Du\",\"doi\":\"10.1109/ICCC51575.2020.9344925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of high-voltage electric switches is an important operation in industrial manufacturing. However, the electrical shock hazards make it dangerous to human. Therefore, classifying high-voltage electric switches automatically is of great interest for factories. For this purpose, we designed a system based on k-nearest neighbor algorithm and bag of visual words model, which performs well in classifying 3 states of highvoltage electric switches. We achieve the classifying task by 3 steps: extracting features of high-voltage electric switch pictures by using SIFT algorithm; clustering SIFT features of all training pictures as visual words and set up a bag of visual words model; calculating the visual words frequency of each picture and using them as inputs of k-nearest neighbor classifier. With the trained model, we extract SIFT features and count visual words frequency of a new picture to be classified, then predict its state by looking for the k nearest training pictures. An experimental study performed on a set of pictures reveals some good performance of this system, compared to other classification methods such as SVM and VGG-16.\",\"PeriodicalId\":386048,\"journal\":{\"name\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC51575.2020.9344925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9344925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高压电气开关的分类是工业制造中的一项重要操作。然而,它的触电危险使其对人体有危险。因此,对高压电气开关进行自动分类是工厂非常感兴趣的问题。为此,我们设计了一个基于k近邻算法和视觉词袋模型的系统,该系统可以很好地对高压开关的3种状态进行分类。我们通过三个步骤来完成分类任务:利用SIFT算法提取高压开关图像的特征;将所有训练图片的SIFT特征聚类为视觉词,建立视觉词袋模型;计算每张图片的视觉词频率,并将其作为k近邻分类器的输入。利用训练好的模型提取SIFT特征,对待分类新图片的视觉词频率进行计数,然后通过寻找k个最接近的训练图片来预测其状态。在一组图片上进行的实验研究表明,与SVM和VGG-16等其他分类方法相比,该系统具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A High-Voltage Electric Switch Classification System Based on K-Nearest Neighbor Classifier
Classification of high-voltage electric switches is an important operation in industrial manufacturing. However, the electrical shock hazards make it dangerous to human. Therefore, classifying high-voltage electric switches automatically is of great interest for factories. For this purpose, we designed a system based on k-nearest neighbor algorithm and bag of visual words model, which performs well in classifying 3 states of highvoltage electric switches. We achieve the classifying task by 3 steps: extracting features of high-voltage electric switch pictures by using SIFT algorithm; clustering SIFT features of all training pictures as visual words and set up a bag of visual words model; calculating the visual words frequency of each picture and using them as inputs of k-nearest neighbor classifier. With the trained model, we extract SIFT features and count visual words frequency of a new picture to be classified, then predict its state by looking for the k nearest training pictures. An experimental study performed on a set of pictures reveals some good performance of this system, compared to other classification methods such as SVM and VGG-16.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe and Stable Timing Method over Air Interface Based on Multi-Base Station Cooperation Peak to Average Power Ratio (PAPR) Mitigation for Underwater Acoustic OFDM System by Using an Efficient Hybridization Technique Monocular Visual-Inertial Odometry Based on Point and Line Features Block Halftoning for Size-Invariant Visual Cryptography Based on Two-Dimensional Lattices Airborne STAP with Unknown Mutual Coupling for Coprime Sampling Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1