细胞神经网络的宏模型故障发生器

M. Grimaila, J. P. de Gyvez
{"title":"细胞神经网络的宏模型故障发生器","authors":"M. Grimaila, J. P. de Gyvez","doi":"10.1109/CNNA.1994.381647","DOIUrl":null,"url":null,"abstract":"A CAD tool based on SPICE macromodels to simulate simplified faulty, circuit realizations of a fully programmable, two dimensional cellular neural network (CNN) is presented. The models can be easily adapted to match the electrical parameters of real circuit implementations. Generic macromodels for both current mode and voltage mode CNNs are provided. The macromodels not only simulate the conceptual CNN cell, but also provide the capability to model actual CNN architectures and their nonidealities. Moreover, macromodeling provides the capability to determine the effect of parameter variation on the operation of the CNN efficiently without the need for computationally expensive, exhaustive circuit simulations. We have used the CNN macromodels to develop robust testing strategies for detecting faults in VLSI implementations of CNN arrays. Three fault cases are introduced into a CNN array to provide insight to the usefulness of macromodeling.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A macromodel fault generator for cellular neural networks\",\"authors\":\"M. Grimaila, J. P. de Gyvez\",\"doi\":\"10.1109/CNNA.1994.381647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A CAD tool based on SPICE macromodels to simulate simplified faulty, circuit realizations of a fully programmable, two dimensional cellular neural network (CNN) is presented. The models can be easily adapted to match the electrical parameters of real circuit implementations. Generic macromodels for both current mode and voltage mode CNNs are provided. The macromodels not only simulate the conceptual CNN cell, but also provide the capability to model actual CNN architectures and their nonidealities. Moreover, macromodeling provides the capability to determine the effect of parameter variation on the operation of the CNN efficiently without the need for computationally expensive, exhaustive circuit simulations. We have used the CNN macromodels to develop robust testing strategies for detecting faults in VLSI implementations of CNN arrays. Three fault cases are introduced into a CNN array to provide insight to the usefulness of macromodeling.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于SPICE宏模型的CAD工具,用于模拟全可编程二维细胞神经网络(CNN)的简化故障电路实现。这些模型可以很容易地适应实际电路实现的电气参数。提供了电流模式和电压模式cnn的通用宏模型。宏模型不仅模拟了概念CNN单元,而且还提供了模拟实际CNN架构及其非理想性的能力。此外,宏建模提供了有效地确定参数变化对CNN运行的影响的能力,而不需要计算昂贵的详尽电路仿真。我们已经使用CNN宏模型来开发鲁棒测试策略,用于检测CNN阵列的VLSI实现中的故障。在CNN数组中引入了三个故障案例,以深入了解宏建模的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A macromodel fault generator for cellular neural networks
A CAD tool based on SPICE macromodels to simulate simplified faulty, circuit realizations of a fully programmable, two dimensional cellular neural network (CNN) is presented. The models can be easily adapted to match the electrical parameters of real circuit implementations. Generic macromodels for both current mode and voltage mode CNNs are provided. The macromodels not only simulate the conceptual CNN cell, but also provide the capability to model actual CNN architectures and their nonidealities. Moreover, macromodeling provides the capability to determine the effect of parameter variation on the operation of the CNN efficiently without the need for computationally expensive, exhaustive circuit simulations. We have used the CNN macromodels to develop robust testing strategies for detecting faults in VLSI implementations of CNN arrays. Three fault cases are introduced into a CNN array to provide insight to the usefulness of macromodeling.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1