混合神经网络在种子人工视觉识别中的应用

Y. Chtioui, D. Bertrand, M. Devaux, D. Barba
{"title":"混合神经网络在种子人工视觉识别中的应用","authors":"Y. Chtioui, D. Bertrand, M. Devaux, D. Barba","doi":"10.1109/TAI.1996.560797","DOIUrl":null,"url":null,"abstract":"Intelligent hybrid systems are playing an increasing role in the development of artificial intelligence. In this study, we applied simulated annealing to adjust the weights of a multilayer neural network (MNN). Two versions of simulated annealing were tested: conventional simulated annealing (CSA) and fast simulated annealing (FSA). The applied hybrid system was used as a classifier in order to discriminate between 3 seed species (1 cultivated seed species which is perennial rye grass, and 2 adventitious seed species which are rumex and wild oat). From a set of colour digital images, 73 morphometrical and textural features were extracted to characterise each individual seed. Stepwise discriminant analysis made it possible to select the first 3 relevant features. The performances of classification were highly dependent on the scaling parameters of simulated annealing. For example, when the number of iterations of simulated annealing was 5, and the number of temperatures was 40, the combination between CSA and MNN correctly classified 98.18 and 97.77 percent of the training and the test sets, whereas FSA and MNN identified 99.18 and 99.68 percent of the same data sets. Globally, FSA outperformed CSA both in reliability and computational resources. A hybrid system combined with a colour image analysis showed promise for the design of an automatic seed identification device.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of a hybrid neural network for the discrimination of seeds by artificial vision\",\"authors\":\"Y. Chtioui, D. Bertrand, M. Devaux, D. Barba\",\"doi\":\"10.1109/TAI.1996.560797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent hybrid systems are playing an increasing role in the development of artificial intelligence. In this study, we applied simulated annealing to adjust the weights of a multilayer neural network (MNN). Two versions of simulated annealing were tested: conventional simulated annealing (CSA) and fast simulated annealing (FSA). The applied hybrid system was used as a classifier in order to discriminate between 3 seed species (1 cultivated seed species which is perennial rye grass, and 2 adventitious seed species which are rumex and wild oat). From a set of colour digital images, 73 morphometrical and textural features were extracted to characterise each individual seed. Stepwise discriminant analysis made it possible to select the first 3 relevant features. The performances of classification were highly dependent on the scaling parameters of simulated annealing. For example, when the number of iterations of simulated annealing was 5, and the number of temperatures was 40, the combination between CSA and MNN correctly classified 98.18 and 97.77 percent of the training and the test sets, whereas FSA and MNN identified 99.18 and 99.68 percent of the same data sets. Globally, FSA outperformed CSA both in reliability and computational resources. A hybrid system combined with a colour image analysis showed promise for the design of an automatic seed identification device.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

智能混合系统在人工智能的发展中发挥着越来越重要的作用。在本研究中,我们应用模拟退火来调整多层神经网络(MNN)的权值。测试了两种不同版本的模拟退火:常规模拟退火(CSA)和快速模拟退火(FSA)。利用应用杂交系统对3种种子(1种栽培种子为多年生黑麦草,2种外生种子为小麦和野燕麦)进行分类。从一组彩色数字图像中,提取73个形态和纹理特征来表征每个种子。逐步判别分析使选择前3个相关特征成为可能。分级的性能高度依赖于模拟退火的标度参数。例如,当模拟退火的迭代次数为5次,温度为40次时,CSA和MNN的组合对训练集和测试集的正确率分别为98.18%和97.77%,而FSA和MNN对相同数据集的正确率分别为99.18%和99.68%。在全球范围内,FSA在可靠性和计算资源方面都优于CSA。结合彩色图像分析的混合系统为种子自动识别装置的设计提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of a hybrid neural network for the discrimination of seeds by artificial vision
Intelligent hybrid systems are playing an increasing role in the development of artificial intelligence. In this study, we applied simulated annealing to adjust the weights of a multilayer neural network (MNN). Two versions of simulated annealing were tested: conventional simulated annealing (CSA) and fast simulated annealing (FSA). The applied hybrid system was used as a classifier in order to discriminate between 3 seed species (1 cultivated seed species which is perennial rye grass, and 2 adventitious seed species which are rumex and wild oat). From a set of colour digital images, 73 morphometrical and textural features were extracted to characterise each individual seed. Stepwise discriminant analysis made it possible to select the first 3 relevant features. The performances of classification were highly dependent on the scaling parameters of simulated annealing. For example, when the number of iterations of simulated annealing was 5, and the number of temperatures was 40, the combination between CSA and MNN correctly classified 98.18 and 97.77 percent of the training and the test sets, whereas FSA and MNN identified 99.18 and 99.68 percent of the same data sets. Globally, FSA outperformed CSA both in reliability and computational resources. A hybrid system combined with a colour image analysis showed promise for the design of an automatic seed identification device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI tools in scheduling problem solving: a solver based on a "well-behaved" restriction of TCSPs A deliberative and reactive diagnosis agent based on logic programming Subdefinite models as a variety of constraint programming Oz Scheduler: a workbench for scheduling problems Automatic scale selection as a pre-processing stage to interpreting real-world data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1