{"title":"具有概率延迟保证的变长信道码","authors":"Y. Altug, H. Poor, S. Verdú","doi":"10.1109/ALLERTON.2015.7447065","DOIUrl":null,"url":null,"abstract":"Variable-length channel codes over discrete memoryless channels subject to probabilistic delay guarantees are examined in the non-vanishing error probability regime. Fundamental limits of these codes in several different settings, which depend on the availability of noiseless feedback and a termination option, are investigated. In stark contrast with average delay guarantees, the first-order terms of the fundamental limits turn out to be the same as those for fixed-length codes in all cases. Further, feedback is shown to improve the second-order term, even in the absence of a termination option.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Variable-length channel codes with probabilistic delay guarantees\",\"authors\":\"Y. Altug, H. Poor, S. Verdú\",\"doi\":\"10.1109/ALLERTON.2015.7447065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable-length channel codes over discrete memoryless channels subject to probabilistic delay guarantees are examined in the non-vanishing error probability regime. Fundamental limits of these codes in several different settings, which depend on the availability of noiseless feedback and a termination option, are investigated. In stark contrast with average delay guarantees, the first-order terms of the fundamental limits turn out to be the same as those for fixed-length codes in all cases. Further, feedback is shown to improve the second-order term, even in the absence of a termination option.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variable-length channel codes with probabilistic delay guarantees
Variable-length channel codes over discrete memoryless channels subject to probabilistic delay guarantees are examined in the non-vanishing error probability regime. Fundamental limits of these codes in several different settings, which depend on the availability of noiseless feedback and a termination option, are investigated. In stark contrast with average delay guarantees, the first-order terms of the fundamental limits turn out to be the same as those for fixed-length codes in all cases. Further, feedback is shown to improve the second-order term, even in the absence of a termination option.