山歌

D. Lazar, Y. Gilad, N. Zeldovich
{"title":"山歌","authors":"D. Lazar, Y. Gilad, N. Zeldovich","doi":"10.1145/3341301.3359648","DOIUrl":null,"url":null,"abstract":"Yodel is the first system for voice calls that hides metadata (e.g., who is communicating with whom) from a powerful adversary that controls the network and compromises servers. Voice calls require sub-second message latency, but low latency has been difficult to achieve in prior work where processing each message requires an expensive public key operation at each hop in the network. Yodel avoids this expense with the idea of self-healing circuits, reusable paths through a mix network that use only fast symmetric cryptography. Once created, these circuits are resilient to passive and active attacks from global adversaries. Creating and connecting to these circuits without leaking metadata is another challenge that Yodel addresses with the idea of guarded circuit exchange, where each user creates a backup circuit in case an attacker tampers with their traffic. We evaluate Yodel across the internet and it achieves acceptable voice quality with 990 ms of latency for 5 million simulated users.","PeriodicalId":331561,"journal":{"name":"Proceedings of the 27th ACM Symposium on Operating Systems Principles","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Yodel\",\"authors\":\"D. Lazar, Y. Gilad, N. Zeldovich\",\"doi\":\"10.1145/3341301.3359648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yodel is the first system for voice calls that hides metadata (e.g., who is communicating with whom) from a powerful adversary that controls the network and compromises servers. Voice calls require sub-second message latency, but low latency has been difficult to achieve in prior work where processing each message requires an expensive public key operation at each hop in the network. Yodel avoids this expense with the idea of self-healing circuits, reusable paths through a mix network that use only fast symmetric cryptography. Once created, these circuits are resilient to passive and active attacks from global adversaries. Creating and connecting to these circuits without leaking metadata is another challenge that Yodel addresses with the idea of guarded circuit exchange, where each user creates a backup circuit in case an attacker tampers with their traffic. We evaluate Yodel across the internet and it achieves acceptable voice quality with 990 ms of latency for 5 million simulated users.\",\"PeriodicalId\":331561,\"journal\":{\"name\":\"Proceedings of the 27th ACM Symposium on Operating Systems Principles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341301.3359648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341301.3359648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yodel
Yodel is the first system for voice calls that hides metadata (e.g., who is communicating with whom) from a powerful adversary that controls the network and compromises servers. Voice calls require sub-second message latency, but low latency has been difficult to achieve in prior work where processing each message requires an expensive public key operation at each hop in the network. Yodel avoids this expense with the idea of self-healing circuits, reusable paths through a mix network that use only fast symmetric cryptography. Once created, these circuits are resilient to passive and active attacks from global adversaries. Creating and connecting to these circuits without leaking metadata is another challenge that Yodel addresses with the idea of guarded circuit exchange, where each user creates a backup circuit in case an attacker tampers with their traffic. We evaluate Yodel across the internet and it achieves acceptable voice quality with 990 ms of latency for 5 million simulated users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TASO Gerenuk The inflection point hypothesis: a principled debugging approach for locating the root cause of a failure Yodel I4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1