温度下降对电力和燃气系统的影响——分析

N. Mandić, H. Glavaš, Ivica Petrović
{"title":"温度下降对电力和燃气系统的影响——分析","authors":"N. Mandić, H. Glavaš, Ivica Petrović","doi":"10.1109/ENERGYCON.2014.6850491","DOIUrl":null,"url":null,"abstract":"Electric and gas systems are two complementary, interconnected energy systems. Each of the systems has a different size and coverage. Their networks cover different areas, the structure of their customers varies across regions, and their presence varies in industry and households. The interrelatedness of these systems is both direct and indirect. The direct interrelatedness is visible in the tasks performed by the gas system in its function of a supplier for electricity production plants. Other than the mentioned direct connection, tasks performed by these two systems complement each other while supplying the consumers, for instance in tasks of heating, hot water preparation, and similar. However, there are also some specific features that create an impression that some systems' elements are separated. The indirect connection regards climate conditions. The aim of the paper is to analyse and present the impact which a temperature drop has on electric and gas system, as well as to analyse the interrelatedness of the two systems in extreme weather conditions taking Zagreb, Croatia as an example area. In winter the consumption of electrical energy and gas rises considerably. Any shortage leads to reactions. A threat to one system indirectly endangers the other. The paper tries to clearly present the systems' very important interrelatedness and interdependence in terms of higher demand for energy-generating products using the example of temperature drop. An immediate and considerable temperature drop provokes very similar responses from both systems. This phenomenon has not been recognized clearly enough by the professional community, and its consequences have not been fully considered.","PeriodicalId":410611,"journal":{"name":"2014 IEEE International Energy Conference (ENERGYCON)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of temperature drop on power and gas systems - analysis\",\"authors\":\"N. Mandić, H. Glavaš, Ivica Petrović\",\"doi\":\"10.1109/ENERGYCON.2014.6850491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric and gas systems are two complementary, interconnected energy systems. Each of the systems has a different size and coverage. Their networks cover different areas, the structure of their customers varies across regions, and their presence varies in industry and households. The interrelatedness of these systems is both direct and indirect. The direct interrelatedness is visible in the tasks performed by the gas system in its function of a supplier for electricity production plants. Other than the mentioned direct connection, tasks performed by these two systems complement each other while supplying the consumers, for instance in tasks of heating, hot water preparation, and similar. However, there are also some specific features that create an impression that some systems' elements are separated. The indirect connection regards climate conditions. The aim of the paper is to analyse and present the impact which a temperature drop has on electric and gas system, as well as to analyse the interrelatedness of the two systems in extreme weather conditions taking Zagreb, Croatia as an example area. In winter the consumption of electrical energy and gas rises considerably. Any shortage leads to reactions. A threat to one system indirectly endangers the other. The paper tries to clearly present the systems' very important interrelatedness and interdependence in terms of higher demand for energy-generating products using the example of temperature drop. An immediate and considerable temperature drop provokes very similar responses from both systems. This phenomenon has not been recognized clearly enough by the professional community, and its consequences have not been fully considered.\",\"PeriodicalId\":410611,\"journal\":{\"name\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCON.2014.6850491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2014.6850491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电力和天然气系统是两个互补、相互联系的能源系统。每个系统都有不同的大小和覆盖范围。他们的网络覆盖不同的地区,他们的客户结构因地区而异,他们的存在因行业和家庭而异。这些系统的相互关系既有直接的,也有间接的。直接的相互关系在气体系统作为电力生产工厂的供应商所执行的任务中是可见的。除了上述直接连接之外,这两个系统在为消费者提供服务时所执行的任务是相互补充的,例如在加热、热水制备等任务中。然而,也有一些特定的功能会让人觉得某些系统的元素是分开的。这种间接联系涉及气候条件。本文的目的是分析和目前的影响,一个温度下降对电力和天然气系统,以及分析在极端天气条件下,以萨格勒布,克罗地亚为例地区两个系统的相互关系。在冬季,电能和煤气的消耗量大大增加。任何短缺都会引发反应。对一个系统的威胁会间接危及另一个系统。本文试图以温度下降为例,从对能源生产产品的更高需求的角度,清楚地展示系统之间非常重要的相互关系和相互依存关系。一个迅速而显著的温度下降会引起两个系统非常相似的反应。这一现象还没有得到专业团体足够清楚的认识,其后果也没有得到充分考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of temperature drop on power and gas systems - analysis
Electric and gas systems are two complementary, interconnected energy systems. Each of the systems has a different size and coverage. Their networks cover different areas, the structure of their customers varies across regions, and their presence varies in industry and households. The interrelatedness of these systems is both direct and indirect. The direct interrelatedness is visible in the tasks performed by the gas system in its function of a supplier for electricity production plants. Other than the mentioned direct connection, tasks performed by these two systems complement each other while supplying the consumers, for instance in tasks of heating, hot water preparation, and similar. However, there are also some specific features that create an impression that some systems' elements are separated. The indirect connection regards climate conditions. The aim of the paper is to analyse and present the impact which a temperature drop has on electric and gas system, as well as to analyse the interrelatedness of the two systems in extreme weather conditions taking Zagreb, Croatia as an example area. In winter the consumption of electrical energy and gas rises considerably. Any shortage leads to reactions. A threat to one system indirectly endangers the other. The paper tries to clearly present the systems' very important interrelatedness and interdependence in terms of higher demand for energy-generating products using the example of temperature drop. An immediate and considerable temperature drop provokes very similar responses from both systems. This phenomenon has not been recognized clearly enough by the professional community, and its consequences have not been fully considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bad data validation on the basis of a posteriori analysis Smart grid investment and technology roadmap for power system planning. Case study for a distribution system operator: EAECSA A discussion of reactive power control possibilities in distribution networks dedicated to generation Comparison of voltage control methods for incrementing active power production Calculating negative LMPs from SOCP-OPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1