脉冲序列数据中的源数估计器

J. Perkins
{"title":"脉冲序列数据中的源数估计器","authors":"J. Perkins","doi":"10.1109/SSAP.1994.572442","DOIUrl":null,"url":null,"abstract":"Data that consists of a number of superimposed pulse trains (each train having a simple pulse arrival pattern) is considered. The number of independent trains present is of interest in a number of applications. By considering the variance (over window position) of the number of pulses lying in a time window the number of periodic sources can be determined. This method of Cox and Smith is generalized from strictly periodic emitters to those with noise or periodic patterns.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source Number Estimator In Pulse Train Data\",\"authors\":\"J. Perkins\",\"doi\":\"10.1109/SSAP.1994.572442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data that consists of a number of superimposed pulse trains (each train having a simple pulse arrival pattern) is considered. The number of independent trains present is of interest in a number of applications. By considering the variance (over window position) of the number of pulses lying in a time window the number of periodic sources can be determined. This method of Cox and Smith is generalized from strictly periodic emitters to those with noise or periodic patterns.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑由多个叠加脉冲序列(每个脉冲序列具有一个简单的脉冲到达模式)组成的数据。在许多应用程序中,存在的独立列车的数量是很重要的。通过考虑时间窗内脉冲数的方差(在窗口位置上),可以确定周期源的数量。Cox和Smith的方法从严格的周期性发射体推广到具有噪声或周期性图案的发射体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Source Number Estimator In Pulse Train Data
Data that consists of a number of superimposed pulse trains (each train having a simple pulse arrival pattern) is considered. The number of independent trains present is of interest in a number of applications. By considering the variance (over window position) of the number of pulses lying in a time window the number of periodic sources can be determined. This method of Cox and Smith is generalized from strictly periodic emitters to those with noise or periodic patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1