基于开放语料库的汉语术语提取新方法

Jianzhou Liu, Xiongkai Shao
{"title":"基于开放语料库的汉语术语提取新方法","authors":"Jianzhou Liu, Xiongkai Shao","doi":"10.1109/IWISA.2010.5473325","DOIUrl":null,"url":null,"abstract":"Automatic Chinese Term Extraction is an important issue in Natural Language Processing. This paper has proposed a new method to extract terms from open corpus. We have used two improved traditional parameters: mutual information and log-likelihood ratio, and have increased the precision of the method to 75.4%. The results of the research indicate that this method is more efficient and robust than previous term-extraction methods.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Method of Extracting Chinese Term Based on Open Corpus\",\"authors\":\"Jianzhou Liu, Xiongkai Shao\",\"doi\":\"10.1109/IWISA.2010.5473325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Chinese Term Extraction is an important issue in Natural Language Processing. This paper has proposed a new method to extract terms from open corpus. We have used two improved traditional parameters: mutual information and log-likelihood ratio, and have increased the precision of the method to 75.4%. The results of the research indicate that this method is more efficient and robust than previous term-extraction methods.\",\"PeriodicalId\":298764,\"journal\":{\"name\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2010.5473325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

中文术语自动抽取是自然语言处理中的一个重要问题。提出了一种从开放语料库中提取术语的新方法。我们使用了两个改进的传统参数:互信息和对数似然比,并将方法的精度提高到75.4%。研究结果表明,该方法比以往的术语提取方法具有更高的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method of Extracting Chinese Term Based on Open Corpus
Automatic Chinese Term Extraction is an important issue in Natural Language Processing. This paper has proposed a new method to extract terms from open corpus. We have used two improved traditional parameters: mutual information and log-likelihood ratio, and have increased the precision of the method to 75.4%. The results of the research indicate that this method is more efficient and robust than previous term-extraction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Display the Data from Database by ListView on Android An Improved Genetic Algorithm and Its Blending Application with Neural Network A Study for Important Criteria of Feature Selection in Text Categorization A Hierarchical Classification Model Based on Granular Computing A Study of Improving Apriori Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1