基于多智能体系统的危机前和危机期投资组合管理

S. Raudys, A. Raudys, Z. Pabarskaite
{"title":"基于多智能体系统的危机前和危机期投资组合管理","authors":"S. Raudys, A. Raudys, Z. Pabarskaite","doi":"10.1109/ISDA.2012.6416551","DOIUrl":null,"url":null,"abstract":"We analyze portfolio creation techniques in a high frequency trading domain and randomly changing environments. We aim to create the best risk/reward portfolio based on thousands of profit histories of automated trading robots. We show that the effectiveness of standard portfolio weight calculation rules depends on the dimensionality, N, and the sample size, L, ratio. To resolve dimensionality / sample size dilemma we suggest designing a multistage feed-forward multi-agent system (MAS). At first we make simple 1/N Portfolio based expert agents. Then we use them and the regularized mean-variance framework to form a large number of more complex fusion agents. Finally we use a trained cost sensitive set of perceptrons to recognize the most successful fusion agents for making a final 1/N Portfolio based weights calculation. Experiments with 7708-dimensional 2004-2012 data confirm the effectiveness of the new approach.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-agent system based portfolio management in prior-to-crisis and crisis period\",\"authors\":\"S. Raudys, A. Raudys, Z. Pabarskaite\",\"doi\":\"10.1109/ISDA.2012.6416551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze portfolio creation techniques in a high frequency trading domain and randomly changing environments. We aim to create the best risk/reward portfolio based on thousands of profit histories of automated trading robots. We show that the effectiveness of standard portfolio weight calculation rules depends on the dimensionality, N, and the sample size, L, ratio. To resolve dimensionality / sample size dilemma we suggest designing a multistage feed-forward multi-agent system (MAS). At first we make simple 1/N Portfolio based expert agents. Then we use them and the regularized mean-variance framework to form a large number of more complex fusion agents. Finally we use a trained cost sensitive set of perceptrons to recognize the most successful fusion agents for making a final 1/N Portfolio based weights calculation. Experiments with 7708-dimensional 2004-2012 data confirm the effectiveness of the new approach.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们分析了高频交易域和随机变化环境下的投资组合创建技术。我们的目标是根据数千个自动交易机器人的盈利历史,创建最佳的风险/回报投资组合。我们证明了标准投资组合权重计算规则的有效性取决于维数N和样本量L比率。为了解决维度/样本量的困境,我们建议设计一个多阶段前馈多智能体系统(MAS)。首先,我们建立了简单的基于1/N组合的专家代理。然后利用它们和正则化均值-方差框架组成大量更复杂的融合因子。最后,我们使用一组训练好的成本敏感感知器来识别最成功的融合代理,以进行最终的1/N组合权重计算。2004-2012年7708维数据的实验验证了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-agent system based portfolio management in prior-to-crisis and crisis period
We analyze portfolio creation techniques in a high frequency trading domain and randomly changing environments. We aim to create the best risk/reward portfolio based on thousands of profit histories of automated trading robots. We show that the effectiveness of standard portfolio weight calculation rules depends on the dimensionality, N, and the sample size, L, ratio. To resolve dimensionality / sample size dilemma we suggest designing a multistage feed-forward multi-agent system (MAS). At first we make simple 1/N Portfolio based expert agents. Then we use them and the regularized mean-variance framework to form a large number of more complex fusion agents. Finally we use a trained cost sensitive set of perceptrons to recognize the most successful fusion agents for making a final 1/N Portfolio based weights calculation. Experiments with 7708-dimensional 2004-2012 data confirm the effectiveness of the new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1