A-HRNet:基于注意力的人体姿态估计高分辨率网络

Ying Li, Chenxi Wang, Yu Cao, Benyuan Liu, Yan Luo, Honggang Zhang
{"title":"A-HRNet:基于注意力的人体姿态估计高分辨率网络","authors":"Ying Li, Chenxi Wang, Yu Cao, Benyuan Liu, Yan Luo, Honggang Zhang","doi":"10.1109/TransAI49837.2020.00016","DOIUrl":null,"url":null,"abstract":"Recently, human pose estimation has received much attention in the research community due to its broad range of application scenarios. Most architectures for human pose estimation use multiple resolution networks, such as Hourglass, CPN, HRNet, etc. High Resolution Network (HRNet) is the latest SOTA architecture improved from Hourglass. In this paper, we propose a novel attention block that leverages a special Channel-Attention branch. We use this attention block as the building block and adopt the architecture of HRNet to build our Attention Based HRNet (A-HRNet). Experiments show that our model can consistently outperform HRNet on different datasets. Moreover, our model achieves the state-of-the-art performance on the COCO keypoint detection val2017 dataset (77.7 AP)1.","PeriodicalId":151527,"journal":{"name":"2020 Second International Conference on Transdisciplinary AI (TransAI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A-HRNet: Attention Based High Resolution Network for Human pose estimation\",\"authors\":\"Ying Li, Chenxi Wang, Yu Cao, Benyuan Liu, Yan Luo, Honggang Zhang\",\"doi\":\"10.1109/TransAI49837.2020.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, human pose estimation has received much attention in the research community due to its broad range of application scenarios. Most architectures for human pose estimation use multiple resolution networks, such as Hourglass, CPN, HRNet, etc. High Resolution Network (HRNet) is the latest SOTA architecture improved from Hourglass. In this paper, we propose a novel attention block that leverages a special Channel-Attention branch. We use this attention block as the building block and adopt the architecture of HRNet to build our Attention Based HRNet (A-HRNet). Experiments show that our model can consistently outperform HRNet on different datasets. Moreover, our model achieves the state-of-the-art performance on the COCO keypoint detection val2017 dataset (77.7 AP)1.\",\"PeriodicalId\":151527,\"journal\":{\"name\":\"2020 Second International Conference on Transdisciplinary AI (TransAI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Second International Conference on Transdisciplinary AI (TransAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TransAI49837.2020.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Second International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI49837.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人体姿态估计由于其广泛的应用场景,近年来受到了研究界的广泛关注。大多数人体姿态估计架构使用多分辨率网络,如沙漏、CPN、HRNet等。高分辨率网络(HRNet)是在沙漏基础上改进的最新SOTA架构。在本文中,我们提出了一种新的注意块,它利用了一个特殊的通道-注意分支。我们以该注意力块为构建块,采用HRNet的架构构建了基于注意力的HRNet (A-HRNet)。实验表明,我们的模型在不同的数据集上都能持续优于HRNet。此外,我们的模型在COCO关键点检测值2017数据集(77.7 AP)上达到了最先进的性能1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A-HRNet: Attention Based High Resolution Network for Human pose estimation
Recently, human pose estimation has received much attention in the research community due to its broad range of application scenarios. Most architectures for human pose estimation use multiple resolution networks, such as Hourglass, CPN, HRNet, etc. High Resolution Network (HRNet) is the latest SOTA architecture improved from Hourglass. In this paper, we propose a novel attention block that leverages a special Channel-Attention branch. We use this attention block as the building block and adopt the architecture of HRNet to build our Attention Based HRNet (A-HRNet). Experiments show that our model can consistently outperform HRNet on different datasets. Moreover, our model achieves the state-of-the-art performance on the COCO keypoint detection val2017 dataset (77.7 AP)1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A-HRNet: Attention Based High Resolution Network for Human pose estimation Spatial Data Management in IoT systems: A study of available storage and indexing solutions Precision HIV Health App, Positive Peers, Powered by Data Harnessing, AI, and Learning Group-specific models of healthcare workers’ well-being using iterative participant clustering Combinatorial Code Classification & Vulnerability Rating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1