使用位平面和标准偏差提取虹膜图案

B. Bonney, R. Ives, D. Etter, Yingzi Du
{"title":"使用位平面和标准偏差提取虹膜图案","authors":"B. Bonney, R. Ives, D. Etter, Yingzi Du","doi":"10.1109/ACSSC.2004.1399200","DOIUrl":null,"url":null,"abstract":"Iris recognition has been shown to be very accurate for human identification. In this paper, we develop a technique for iris pattern extraction utilizing the least significant bit-plane: the least significant bit of every pixel in the image. Through binary morphology applied to the bit-plane, the pupillary boundary of the iris is determined. The limbic boundary is identified by evaluating the standard deviation of the image intensity along the vertical and horizontal axes. Because our extraction approach restricts localization techniques to evaluating only bit-planes and standard deviations, iris pattern extraction is not dependent on circular edge detection. This allows for an expanded functionality of iris identification technology by no longer requiring a frontal view, which leads to the potential for off-angle iris recognition technology. Initial results show that it is possible to fit a close elliptical approximation to an iris pattern by using only bit-planes and standard deviations for iris localization.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Iris pattern extraction using bit planes and standard deviations\",\"authors\":\"B. Bonney, R. Ives, D. Etter, Yingzi Du\",\"doi\":\"10.1109/ACSSC.2004.1399200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iris recognition has been shown to be very accurate for human identification. In this paper, we develop a technique for iris pattern extraction utilizing the least significant bit-plane: the least significant bit of every pixel in the image. Through binary morphology applied to the bit-plane, the pupillary boundary of the iris is determined. The limbic boundary is identified by evaluating the standard deviation of the image intensity along the vertical and horizontal axes. Because our extraction approach restricts localization techniques to evaluating only bit-planes and standard deviations, iris pattern extraction is not dependent on circular edge detection. This allows for an expanded functionality of iris identification technology by no longer requiring a frontal view, which leads to the potential for off-angle iris recognition technology. Initial results show that it is possible to fit a close elliptical approximation to an iris pattern by using only bit-planes and standard deviations for iris localization.\",\"PeriodicalId\":396779,\"journal\":{\"name\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2004.1399200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

虹膜识别已被证明是非常准确的人类身份识别。在本文中,我们开发了一种利用最低有效位平面的虹膜模式提取技术:图像中每个像素的最低有效位。通过将二值形态学应用于位平面,确定虹膜瞳孔边界。边缘边界是通过评估沿垂直和水平轴的图像强度的标准偏差来确定的。由于我们的提取方法限制了定位技术仅评估位平面和标准偏差,虹膜图案提取不依赖于圆形边缘检测。这允许虹膜识别技术的扩展功能,不再需要正面视图,这导致潜在的非角度虹膜识别技术。初步结果表明,仅使用位平面和标准偏差进行虹膜定位,就可以拟合虹膜模式的近椭圆近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iris pattern extraction using bit planes and standard deviations
Iris recognition has been shown to be very accurate for human identification. In this paper, we develop a technique for iris pattern extraction utilizing the least significant bit-plane: the least significant bit of every pixel in the image. Through binary morphology applied to the bit-plane, the pupillary boundary of the iris is determined. The limbic boundary is identified by evaluating the standard deviation of the image intensity along the vertical and horizontal axes. Because our extraction approach restricts localization techniques to evaluating only bit-planes and standard deviations, iris pattern extraction is not dependent on circular edge detection. This allows for an expanded functionality of iris identification technology by no longer requiring a frontal view, which leads to the potential for off-angle iris recognition technology. Initial results show that it is possible to fit a close elliptical approximation to an iris pattern by using only bit-planes and standard deviations for iris localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information theoretic comparison of MIMO wireless communication receivers in the presence of interference Model-convolution approach to modeling fluorescent protein dynamics Adaptive projected subgradient method and set theoretic adaptive filtering with multiple convex constraints A multiuser OFDM system with user cooperation Identifying and tracking turbulence structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1