pev参与智能电网频率调节的分层监控系统

Keyhaneh Janfeshan, M. Masoum
{"title":"pev参与智能电网频率调节的分层监控系统","authors":"Keyhaneh Janfeshan, M. Masoum","doi":"10.1109/JPETS.2017.2740227","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-level hierarchical supervisory control system for plug-in electric vehicles (PEVs) participating in frequency regulation in microgrids with interconnected areas. At the lower level, decentralized fuzzy logic control systems are designed for individual PEVs which locally adjust the V2G power flow rates from each vehicle to the grid according to the frequency deviation in each area and the vehicle’s current state of charge (SOC), while maintaining the SOC level above the driver’s requested SOC lower limit. At the grid level, a centralized supervisory control system is used to coordinate the injected power from generating units and PEVs based on the grid demand. Simulation results are presented and analyzed to investigate the performance of the proposed two-level system in a network consisting of three interconnected areas populated with PEVs under load disturbances and wind power fluctuations.","PeriodicalId":170601,"journal":{"name":"IEEE Power and Energy Technology Systems Journal","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Hierarchical Supervisory Control System for PEVs Participating in Frequency Regulation of Smart Grids\",\"authors\":\"Keyhaneh Janfeshan, M. Masoum\",\"doi\":\"10.1109/JPETS.2017.2740227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a two-level hierarchical supervisory control system for plug-in electric vehicles (PEVs) participating in frequency regulation in microgrids with interconnected areas. At the lower level, decentralized fuzzy logic control systems are designed for individual PEVs which locally adjust the V2G power flow rates from each vehicle to the grid according to the frequency deviation in each area and the vehicle’s current state of charge (SOC), while maintaining the SOC level above the driver’s requested SOC lower limit. At the grid level, a centralized supervisory control system is used to coordinate the injected power from generating units and PEVs based on the grid demand. Simulation results are presented and analyzed to investigate the performance of the proposed two-level system in a network consisting of three interconnected areas populated with PEVs under load disturbances and wind power fluctuations.\",\"PeriodicalId\":170601,\"journal\":{\"name\":\"IEEE Power and Energy Technology Systems Journal\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power and Energy Technology Systems Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JPETS.2017.2740227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power and Energy Technology Systems Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JPETS.2017.2740227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

针对插电式电动汽车在互联区域微电网中参与频率调节的问题,提出了一种两级分层监控系统。在较低的层次上,分散的模糊逻辑控制系统为单独的pev设计,根据每个区域的频率偏差和车辆的当前充电状态(SOC)局部调整从每辆车到电网的V2G功率流率,同时保持SOC水平高于驾驶员要求的SOC下限。在电网层面,根据电网需求,采用集中监控系统协调发电机组和电动汽车的注入功率。给出了仿真结果并对仿真结果进行了分析,以研究该两级系统在负荷扰动和风力波动下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Supervisory Control System for PEVs Participating in Frequency Regulation of Smart Grids
This paper proposes a two-level hierarchical supervisory control system for plug-in electric vehicles (PEVs) participating in frequency regulation in microgrids with interconnected areas. At the lower level, decentralized fuzzy logic control systems are designed for individual PEVs which locally adjust the V2G power flow rates from each vehicle to the grid according to the frequency deviation in each area and the vehicle’s current state of charge (SOC), while maintaining the SOC level above the driver’s requested SOC lower limit. At the grid level, a centralized supervisory control system is used to coordinate the injected power from generating units and PEVs based on the grid demand. Simulation results are presented and analyzed to investigate the performance of the proposed two-level system in a network consisting of three interconnected areas populated with PEVs under load disturbances and wind power fluctuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid Transfer Matrix-Based Calculation of Steady-State Temperature Rises in Cable Ducts Containing Groups of Three Phase Cable 2019 Index IEEE Power and Energy Technology Systems Journal Vol. 6 Online Centralized Charging Coordination of PEVs With Decentralized Var Discharging for Mitigation of Voltage Unbalance Sampling-Based Model Predictive Control of PV-Integrated Energy Storage System Considering Power Generation Forecast and Real-Time Price Multi-Rate Mixed-Solver for Real-Time Nonlinear Electromagnetic Transient Emulation of AC/DC Networks on FPGA-MPSoC Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1