机器人路径规划的多策略方法

G. Bianco, R. Cassinis
{"title":"机器人路径规划的多策略方法","authors":"G. Bianco, R. Cassinis","doi":"10.1109/EURBOT.1996.551889","DOIUrl":null,"url":null,"abstract":"The paper presents a proposal for an autonomous robot path planning system that uses several strategies to reach a target also in an a-priori unknown environment. The proposed method has learning capabilities that allow the robot to take advantage of previous experience, thus improving its performance during successive traveling in the same environment. The proposed multistrategic approach has been tested both on a software simulator and on a real robot.","PeriodicalId":136786,"journal":{"name":"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-strategic approach for robot path planning\",\"authors\":\"G. Bianco, R. Cassinis\",\"doi\":\"10.1109/EURBOT.1996.551889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a proposal for an autonomous robot path planning system that uses several strategies to reach a target also in an a-priori unknown environment. The proposed method has learning capabilities that allow the robot to take advantage of previous experience, thus improving its performance during successive traveling in the same environment. The proposed multistrategic approach has been tested both on a software simulator and on a real robot.\",\"PeriodicalId\":136786,\"journal\":{\"name\":\"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURBOT.1996.551889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1996.551889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种自主机器人路径规划系统,该系统在先验未知环境中使用多种策略到达目标。该方法具有学习能力,使机器人能够利用先前的经验,从而提高其在同一环境中连续行进的性能。所提出的多策略方法已在软件模拟器和真实机器人上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-strategic approach for robot path planning
The paper presents a proposal for an autonomous robot path planning system that uses several strategies to reach a target also in an a-priori unknown environment. The proposed method has learning capabilities that allow the robot to take advantage of previous experience, thus improving its performance during successive traveling in the same environment. The proposed multistrategic approach has been tested both on a software simulator and on a real robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perception of an underwater structure for inspection and guidance purpose Multi-strategic approach for robot path planning Route learning in mobile robots through self-organisation Real-time phase-based stereo for a mobile robot Ultrasonic sensing and fuzzy logic control for navigation in unknown static environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1