评估功能即服务功能的容量

Anshul Jindal, Mohak Chadha, S. Benedict, M. Gerndt
{"title":"评估功能即服务功能的容量","authors":"Anshul Jindal, Mohak Chadha, S. Benedict, M. Gerndt","doi":"10.1145/3492323.3495628","DOIUrl":null,"url":null,"abstract":"Serverless computing is a cloud computing paradigm that allows developers to focus exclusively on business logic as cloud service providers manage resource management tasks. Serverless applications follow this model, where the application is decomposed into a set of fine-grained Function-as-a-Service (FaaS) functions. However, the obscurities of the underlying system infrastructure and dependencies between FaaS functions within the application pose a challenge for estimating the performance of FaaS functions. To characterize the performance of a FaaS function that is relevant for the user, we define Function Capacity (FC) as the maximal number of concurrent invocations the function can serve in a time without violating the Service-Level Objective (SLO). The paper addresses the challenge of quantifying the FC individually for each FaaS function within a serverless application. This challenge is addressed by sandboxing a FaaS function and building its performance model. To this end, we develop FnCapacitor - an end-to-end automated Function Capacity estimation tool. We demonstrate the functioning of our tool on Google Cloud Functions (GCF) and AWS Lambda. FnCapacitor estimates the FCs on different deployment configurations (allocated memory & maximum function instances) by conducting time-framed load tests and building various models using statistical: linear, ridge, and polynomial regression, and Deep Neural Network (DNN) methods on the acquired performance data. Our evaluation of different FaaS functions shows relatively accurate predictions with an accuracy greater than 75% using DNN for both cloud providers.","PeriodicalId":440884,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Estimating the capacities of function-as-a-service functions\",\"authors\":\"Anshul Jindal, Mohak Chadha, S. Benedict, M. Gerndt\",\"doi\":\"10.1145/3492323.3495628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless computing is a cloud computing paradigm that allows developers to focus exclusively on business logic as cloud service providers manage resource management tasks. Serverless applications follow this model, where the application is decomposed into a set of fine-grained Function-as-a-Service (FaaS) functions. However, the obscurities of the underlying system infrastructure and dependencies between FaaS functions within the application pose a challenge for estimating the performance of FaaS functions. To characterize the performance of a FaaS function that is relevant for the user, we define Function Capacity (FC) as the maximal number of concurrent invocations the function can serve in a time without violating the Service-Level Objective (SLO). The paper addresses the challenge of quantifying the FC individually for each FaaS function within a serverless application. This challenge is addressed by sandboxing a FaaS function and building its performance model. To this end, we develop FnCapacitor - an end-to-end automated Function Capacity estimation tool. We demonstrate the functioning of our tool on Google Cloud Functions (GCF) and AWS Lambda. FnCapacitor estimates the FCs on different deployment configurations (allocated memory & maximum function instances) by conducting time-framed load tests and building various models using statistical: linear, ridge, and polynomial regression, and Deep Neural Network (DNN) methods on the acquired performance data. Our evaluation of different FaaS functions shows relatively accurate predictions with an accuracy greater than 75% using DNN for both cloud providers.\",\"PeriodicalId\":440884,\"journal\":{\"name\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3492323.3495628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492323.3495628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

无服务器计算是一种云计算范式,它允许开发人员在云服务提供商管理资源管理任务时专注于业务逻辑。无服务器应用程序遵循此模型,其中应用程序被分解为一组细粒度的功能即服务(FaaS)函数。然而,底层系统基础结构的模糊性和应用程序中FaaS功能之间的依赖关系对估计FaaS功能的性能提出了挑战。为了描述与用户相关的FaaS功能的性能,我们将功能容量(FC)定义为该功能在不违反服务水平目标(SLO)的情况下可以服务的最大并发调用数。本文解决了在无服务器应用程序中为每个FaaS功能单独量化FC的挑战。通过对FaaS功能进行沙箱化并构建其性能模型,可以解决这一挑战。为此,我们开发了FnCapacitor——一个端到端的自动化功能容量估计工具。我们在Google Cloud Functions (GCF)和AWS Lambda上演示了我们的工具的功能。FnCapacitor通过执行时间框架负载测试和使用统计:线性、脊和多项式回归以及深度神经网络(DNN)方法对获得的性能数据构建各种模型,来估计不同部署配置(分配内存和最大功能实例)上的fc。我们对不同FaaS功能的评估显示,使用DNN对两家云提供商进行相对准确的预测,准确率超过75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating the capacities of function-as-a-service functions
Serverless computing is a cloud computing paradigm that allows developers to focus exclusively on business logic as cloud service providers manage resource management tasks. Serverless applications follow this model, where the application is decomposed into a set of fine-grained Function-as-a-Service (FaaS) functions. However, the obscurities of the underlying system infrastructure and dependencies between FaaS functions within the application pose a challenge for estimating the performance of FaaS functions. To characterize the performance of a FaaS function that is relevant for the user, we define Function Capacity (FC) as the maximal number of concurrent invocations the function can serve in a time without violating the Service-Level Objective (SLO). The paper addresses the challenge of quantifying the FC individually for each FaaS function within a serverless application. This challenge is addressed by sandboxing a FaaS function and building its performance model. To this end, we develop FnCapacitor - an end-to-end automated Function Capacity estimation tool. We demonstrate the functioning of our tool on Google Cloud Functions (GCF) and AWS Lambda. FnCapacitor estimates the FCs on different deployment configurations (allocated memory & maximum function instances) by conducting time-framed load tests and building various models using statistical: linear, ridge, and polynomial regression, and Deep Neural Network (DNN) methods on the acquired performance data. Our evaluation of different FaaS functions shows relatively accurate predictions with an accuracy greater than 75% using DNN for both cloud providers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based distributed platform for accountable medical data sharing An empirical analysis of LADA diabetes case, control and variable importance Estimating the capacities of function-as-a-service functions Session details: International Workshop on Machine Learning and Health Informatics (MLHI) Alcoholism detection via GLCM and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1