自动关联你的资产,或者,它不是所有的白噪声:在蒙特卡罗模拟中生成自相关时间序列数据的实用方法

R. Stock
{"title":"自动关联你的资产,或者,它不是所有的白噪声:在蒙特卡罗模拟中生成自相关时间序列数据的实用方法","authors":"R. Stock","doi":"10.2139/ssrn.3499099","DOIUrl":null,"url":null,"abstract":"The inherent assumption with most Monte Carlo techniques is that one may ignore autocorrelations, but doing so compromises the quality of the prediction from the data. Simulations that do not take account of autocorrelation will not properly model reality, as there is significant autocorrelation in many asset returns, for example in T-Bills and hedge fund strategies that involve illiquid, long-term holdings, which do not satisfy the “random walk” assumption with a “white noise” spectrum. A detailed mathematical method is proposed for simulating market returns by generating random time series that satisfy the statistics of any serial autocorrelation, as well as the actual (possibly non-Gaussian) joint probability distributions.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autocorrelate Your Assets or, It's Not All White Noise: A Practical Means for Generating Autocorrelated Time Series Data in Monte Carlo Simulations\",\"authors\":\"R. Stock\",\"doi\":\"10.2139/ssrn.3499099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inherent assumption with most Monte Carlo techniques is that one may ignore autocorrelations, but doing so compromises the quality of the prediction from the data. Simulations that do not take account of autocorrelation will not properly model reality, as there is significant autocorrelation in many asset returns, for example in T-Bills and hedge fund strategies that involve illiquid, long-term holdings, which do not satisfy the “random walk” assumption with a “white noise” spectrum. A detailed mathematical method is proposed for simulating market returns by generating random time series that satisfy the statistics of any serial autocorrelation, as well as the actual (possibly non-Gaussian) joint probability distributions.\",\"PeriodicalId\":406666,\"journal\":{\"name\":\"Applied Computing eJournal\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3499099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3499099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数蒙特卡罗技术的固有假设是可以忽略自相关性,但这样做会损害数据预测的质量。不考虑自相关的模拟将不能正确地模拟现实,因为在许多资产回报中存在显著的自相关,例如在涉及非流动性、长期持有的国库券和对冲基金策略中,它们不满足带有“白噪声”频谱的“随机漫步”假设。本文提出了一种详细的数学方法,通过生成满足任意序列自相关统计量以及实际(可能是非高斯的)联合概率分布的随机时间序列来模拟市场回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autocorrelate Your Assets or, It's Not All White Noise: A Practical Means for Generating Autocorrelated Time Series Data in Monte Carlo Simulations
The inherent assumption with most Monte Carlo techniques is that one may ignore autocorrelations, but doing so compromises the quality of the prediction from the data. Simulations that do not take account of autocorrelation will not properly model reality, as there is significant autocorrelation in many asset returns, for example in T-Bills and hedge fund strategies that involve illiquid, long-term holdings, which do not satisfy the “random walk” assumption with a “white noise” spectrum. A detailed mathematical method is proposed for simulating market returns by generating random time series that satisfy the statistics of any serial autocorrelation, as well as the actual (possibly non-Gaussian) joint probability distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Elasticity of Consumer Prices to the Exchange Rate: An Accounting Approach The Role of Absorptive Capacity and Employee Empowerment in Digital Transformation of SMEs Apple's Mounting App Store Woes SEPs Licensing Across the Supply Chain: An Antitrust Perspective An Analysis on the Implementation of Air Pollution Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1