基于TDOA的声源定位鲁棒离线训练神经网络

Srikanth Raj Chetupalli, Ashwin Ram, V. Sreenivas Thippur
{"title":"基于TDOA的声源定位鲁棒离线训练神经网络","authors":"Srikanth Raj Chetupalli, Ashwin Ram, V. Sreenivas Thippur","doi":"10.1109/NCC.2018.8600013","DOIUrl":null,"url":null,"abstract":"Passive sound source localization (SSL) using time-difference-of-arrival (TDOA) measurements is a non-linear inversion problem. In this paper, a data-driven approach to SSL using TDOA measurements is considered. A neural network (NN) is viewed as an architecture constrained non-linear function, with its parameters learnt from the training data. We consider a three layer neural network with TDOA measurements between pairs of microphones as input features and source location in the Cartesian coordinate system as output. Experimentally, we show that, NN trained even on noise-less TDOA measurements can achieve good performance for noisy TDOA inputs also. These performances are better than the traditional spherical interpolation (SI) method. We show that the NN trained offline using simulated TDOA measurements, performs better than the SI method, on real-life speech signals in a simulated enclosure.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust offline trained neural network for TDOA based sound source localization\",\"authors\":\"Srikanth Raj Chetupalli, Ashwin Ram, V. Sreenivas Thippur\",\"doi\":\"10.1109/NCC.2018.8600013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive sound source localization (SSL) using time-difference-of-arrival (TDOA) measurements is a non-linear inversion problem. In this paper, a data-driven approach to SSL using TDOA measurements is considered. A neural network (NN) is viewed as an architecture constrained non-linear function, with its parameters learnt from the training data. We consider a three layer neural network with TDOA measurements between pairs of microphones as input features and source location in the Cartesian coordinate system as output. Experimentally, we show that, NN trained even on noise-less TDOA measurements can achieve good performance for noisy TDOA inputs also. These performances are better than the traditional spherical interpolation (SI) method. We show that the NN trained offline using simulated TDOA measurements, performs better than the SI method, on real-life speech signals in a simulated enclosure.\",\"PeriodicalId\":121544,\"journal\":{\"name\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2018.8600013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用到达时间差(TDOA)测量的被动声源定位是一个非线性反演问题。在本文中,考虑了使用TDOA度量的数据驱动的SSL方法。神经网络被看作是一个结构约束的非线性函数,其参数从训练数据中学习。我们考虑了一个三层神经网络,以麦克风对之间的TDOA测量作为输入特征,以笛卡尔坐标系中的源位置作为输出。实验表明,即使在无噪声的TDOA测量上训练的神经网络也可以在有噪声的TDOA输入上获得良好的性能。这些性能优于传统的球面插值(SI)方法。我们表明,使用模拟TDOA测量离线训练的神经网络在模拟箱体中的真实语音信号上比SI方法表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust offline trained neural network for TDOA based sound source localization
Passive sound source localization (SSL) using time-difference-of-arrival (TDOA) measurements is a non-linear inversion problem. In this paper, a data-driven approach to SSL using TDOA measurements is considered. A neural network (NN) is viewed as an architecture constrained non-linear function, with its parameters learnt from the training data. We consider a three layer neural network with TDOA measurements between pairs of microphones as input features and source location in the Cartesian coordinate system as output. Experimentally, we show that, NN trained even on noise-less TDOA measurements can achieve good performance for noisy TDOA inputs also. These performances are better than the traditional spherical interpolation (SI) method. We show that the NN trained offline using simulated TDOA measurements, performs better than the SI method, on real-life speech signals in a simulated enclosure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining the Generalized Hamming Weight Hierarchy of the Binary Projective Reed-Muller Code A Cognitive Opportunistic Fractional Frequency Reuse Scheme for OFDMA Uplinks Caching Policies for Transient Data Grouping Subarray for Robust Estimation of Direction of Arrival Universal Compression of a Piecewise Stationary Source Through Sequential Change Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1