基于CNN的视觉反馈控制与输入数据融合

Adrian-Paul Botezatu, L. Ferariu, A. Burlacu, Teodor-Andrei Sauciuc
{"title":"基于CNN的视觉反馈控制与输入数据融合","authors":"Adrian-Paul Botezatu, L. Ferariu, A. Burlacu, Teodor-Andrei Sauciuc","doi":"10.1109/ICSTCC55426.2022.9931843","DOIUrl":null,"url":null,"abstract":"Visual servoing systems are designed to solve pose alignment problems by providing the necessary linear and angular velocities using data extracted from images. Among the difficulties encountered by the traditional visual servoing approaches, there are feature detection and tracking, camera calibration, scene complexity, and robotic system constraints. Part of these problems can be solved if Convolutional Neural Networks (CNNs) are added to a visual servoing architecture. The main advantage of CNNs is the capability of understanding both the overall structure and specific details of the images corresponding to the current and desired layouts. To take a step further the state-of-the-art architectures, in this paper, we show how extra input data can improve the visual servoing behaviour. The extra data result from maps of regions induced by the feature points' positions, without the necessity of employing tracking. The results obtained on relevant data sets show that the proposed input fusion-based CNN provides an improved approximation of the linear and angular visual servoing velocities.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual Feedback Control using CNN Based Architecture with Input Data Fusion\",\"authors\":\"Adrian-Paul Botezatu, L. Ferariu, A. Burlacu, Teodor-Andrei Sauciuc\",\"doi\":\"10.1109/ICSTCC55426.2022.9931843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual servoing systems are designed to solve pose alignment problems by providing the necessary linear and angular velocities using data extracted from images. Among the difficulties encountered by the traditional visual servoing approaches, there are feature detection and tracking, camera calibration, scene complexity, and robotic system constraints. Part of these problems can be solved if Convolutional Neural Networks (CNNs) are added to a visual servoing architecture. The main advantage of CNNs is the capability of understanding both the overall structure and specific details of the images corresponding to the current and desired layouts. To take a step further the state-of-the-art architectures, in this paper, we show how extra input data can improve the visual servoing behaviour. The extra data result from maps of regions induced by the feature points' positions, without the necessity of employing tracking. The results obtained on relevant data sets show that the proposed input fusion-based CNN provides an improved approximation of the linear and angular visual servoing velocities.\",\"PeriodicalId\":220845,\"journal\":{\"name\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC55426.2022.9931843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视觉伺服系统的设计是通过使用从图像中提取的数据提供必要的线速度和角速度来解决姿势对齐问题。传统的视觉伺服方法所遇到的困难包括特征检测与跟踪、摄像机标定、场景复杂性和机器人系统约束等。如果将卷积神经网络(cnn)添加到视觉伺服体系结构中,这些问题可以部分解决。cnn的主要优点是能够理解与当前和期望布局相对应的图像的整体结构和特定细节。为了进一步发展最先进的体系结构,在本文中,我们展示了额外的输入数据如何改善视觉伺服行为。额外的数据是由特征点的位置引起的区域图,而不需要使用跟踪。在相关数据集上得到的结果表明,基于输入融合的CNN提供了一种改进的线性和角视觉伺服速度逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Feedback Control using CNN Based Architecture with Input Data Fusion
Visual servoing systems are designed to solve pose alignment problems by providing the necessary linear and angular velocities using data extracted from images. Among the difficulties encountered by the traditional visual servoing approaches, there are feature detection and tracking, camera calibration, scene complexity, and robotic system constraints. Part of these problems can be solved if Convolutional Neural Networks (CNNs) are added to a visual servoing architecture. The main advantage of CNNs is the capability of understanding both the overall structure and specific details of the images corresponding to the current and desired layouts. To take a step further the state-of-the-art architectures, in this paper, we show how extra input data can improve the visual servoing behaviour. The extra data result from maps of regions induced by the feature points' positions, without the necessity of employing tracking. The results obtained on relevant data sets show that the proposed input fusion-based CNN provides an improved approximation of the linear and angular visual servoing velocities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of 5G communication based on distance evaluation using the SIM8200EA-M2 module Using 3D Scanning Techniques from Robotic Applications in the Constructions Domain Chen-Fliess Series for Linear Distributed Systems with One Spatial Dimension Component generator for the development of RESTful APIs Sensitivity-Based Iterative State-Feedback Tuning for Nonlinear Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1